- •Справочный материал оглавление
- •1. Параметры идеального и реального оу. Основные схемы включения оу: инвертирующая, не инвертирующая, дифференциальная, повторитель напряжения.
- •2. Схемы суммирования, дифференцирования, интегрирования. Логарифмические и антилогарифмические преобразователи.
- •3. Классификация усилителей на транзисторах, параметры усилителей.
- •4. Определение генератора импульсов, основные виды генераторов.
- •5. Функции цифровых устройств, основные понятия, клу, сумматоры, триггеры, регистры и счетчики, ацп, цап, озу, пзу.
- •6. Виды энергоресурсов, их запасы и использование.
- •7.Конструкция линий электрических сетей.
- •8.Структура топливно-энергетического комплекса. Роль тэк в экономике рф.
- •9.Информационные электрические микромашины. Тахогенераторы постоянного тока.
- •10. Информационные электрические микромашины. Сельсины.
- •11. Информационные электрические микромашины. Вращающие трансформаторы
- •12. Информационные электрические микромашины. Спец. Трансформаторы тока.
- •13 Информационные электрические микромашины. Спец. Трансформаторы напряжения.
- •14. Информационные электрические микромашины. Автотрансформаторы.
- •15. Система аскуэ.
- •16. Электроизмерительные приборы.
- •17. Поисковое оборудование. Дефектоискатели. Трассодефектоискатели и трассоискатели.
- •18. Система для локализации мест повреждений на кабельных линиях. Установка для прожига места повреждения силовых кабелей.
- •19. Необходимость компьютерного моделирования цепей, моделирующие программы.
- •27. Ремонтопригодность, долговечность, сохраняемость.
- •28. Факторы, нарушающие надежность электроснабжения потребителей.
- •29. Способы повышения надежности электроснабжения потребителей.
- •30. Надежность простейших резервированных систем. Постоянно включенный резерв.
- •31. Надежность электрических систем при общем и раздельном резервировании.
- •32. Генераторы электростанций. Синхронные генераторы.
- •33. Генераторы электростанций. Турбогенераторы.
- •34. Генераторы электростанций. Гидрогенераторы.
- •35. Генераторы электростанций. Схема возбуждения генераторов.
- •36. Генераторы электростанций. Характеристики генераторов, работающих на автономную сеть.
- •37. Генераторы электростанций. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянно частоты.
- •38. Генераторы электростанций. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности.
- •39. Основное электрическое оборудование электрических станций. Трансформаторное оборудование.
- •40. Основное электрическое оборудование электрических станций. Коммутационные и защитные аппараты высокого напряжения.
- •41. Электрические схемы электростанций и подстанций. Классификация схем распределительных устройств. Основные требования, предъявляемые к схемам распределительных устройств электроустановок.
- •42. Электрические схемы электростанций и подстанций. Схемы, применяемые на генераторном напряжении.
- •43. Электрические схемы электростанций и подстанций. Схемы, применяемые на высшем и среднем напряжениях.
- •44. Электрические схемы электростанций и подстанций. Типовая сетка схем распределительных устройств
- •45. Электрические схемы электростанций и подстанций. Структурные схемы электрических станций и подстанций
- •46. Электрические схемы электростанций и подстанций. Электроснабжение собственных нужд электростанций и подстанций
- •47. Гидроэнергетические источники энергии. Основные схемы использования водной энергии. Мощность гэс и выработка электроэнергии.
- •48. Нетрадиционные источники энергии. Солнечная энергетика.
- •49. Нетрадиционные источники энергии. Ветроэнергетика.
- •50. Нетрадиционные источники энергии. Вторичные источники ресурсов.
- •52.Устройства и функционирование тэц. Раздельная и комбинированная выработка электроэнергии и тепла. Показатели качества работы тэс
- •53. Устройство и функционирование аэс. Технологические схемы производства электроэнергии на аэс.
- •54. Схемотехника. Регулируемые источники питания, определение, классификация, потенциометр и схема Дарлингтона.
- •55. Схемотехника. Ступенчатые регуляторы.
- •56. Схемотехника. Стабилизаторы напряжения.
- •57. Схемотехника. Гираторы.
- •5 8. Схемотехника. Активные фильтры.
- •59.Схемотехника. Генераторы.
- •60. Схемотехника. Аналоговые компараторы, определение, различные схемы сравнения.
- •61. Схемотехника. Согласование сопротивлений, тепловой шум.
- •62. Схемотехника. Усилители на высоких частотах
- •63.Причины возникновения переходных процессов в электроэнергетических системах.
- •64. Основные допущения на которых базируются практические методы расчета переходных электромагнитных процессов.
- •65. Выбор выключателей по отключающей способности.
- •66. Влияние несимметрии ротора синхронной машины на переходный процесс при нарушении симметрии трехфазной цепи.
- •67. Особенности распространения токов нулевой последовательности по воздушным линиям электропередач.
- •68. Влияние переходного сопротивления в месте короткого замыкания.
- •69. Особенности простого замыкания на землю в распределительных сетях.
- •70. Влияние изменения параметров проводников на значение тока кз.
- •71. Расчетов тока кз в установках напряжением до 1000в.
- •72. Электрическая система и её элементы. Режимы и процессы. Различные виды режимов и процессов в электрических системах.
- •73. Статическая и динамическая устойчивость системы.
- •74. Параметры режима и параметры системы.
- •75. Характерные стадии переходных режимов и их влияние на оборудование электрической системы. Энергетика переходного процесса.
- •76. Критерии устойчивости и избыточная энергия.
- •77. Критерии устойчивости и избыточная мощность.
- •1 3 Лекция. Динамическая устойчивость при коротком замыкании на линии
- •78. Практические критерии режима электрической системы.
- •79. Текучесть нормального режима электрической системы.
- •80. Критерии устойчивости простейшей электрической системы.
- •81. Критерии устойчивости асинхронного двигателя.
- •82. Критерии динамической устойчивости электрической системы.
- •83. Суть метода последовательных интервалов при определении времени отключения.
- •84. Запас устойчивости электрической системы по напряжению.
- •85. Запас устойчивости электропередачи.
- •86. Схемы замещения линии электропередачи.
- •87. Схемы замещения синхронной машины.
- •8 8. Схемы замещения асинхронного двигателя.
- •8 9. Схемы замещения трансформатора.
- •90. Как можно получить расчетом и экспериментом статические характеристики комплексной нагрузки?
- •91. Статические характеристики асинхронного двигателя. Понятие критического скольжения, момента, мощности. «Опрокидывание» асинхронного двигателя.
- •92. Динамические характеристики асинхронного двигателя.
- •93. Характеристики синхронной нагрузки.
- •94. Электрический центр системы.
- •95. Защита и автоматика линий электропередачи. Основные органы токовой защиты.
- •2.1. Основные органы токовой защиты
- •96. Схемы соединения измерительных преобразователей тока и цепей тока вторичных измерительных органов.
- •97. Выбор токов и времени срабатывания максимальной токовой защиты.
- •98. Схемы токовых защит.
- •99. Токовые защиты с измерительными органами тока и напряжения.
- •100. Защита от замыкания на землю, реагирующая на токи и напряжения нулевой последовательности установившегося режима.
- •101. Назначение, виды и принцип действия дифференциальных защит.
- •4.2. Принцип действия продольной дифференциальной токовой защиты
- •102. Схемы устройства автоматического повторного включения.
- •103. Схема устройства автоматического включения резерва.
- •104. Защита и автоматика трансформаторов подстанций.
- •105. Виды повреждений и ненормальных режимов работы трансформаторов.
- •106. Токовая защита трансформаторов от коротких замыканий. Токовая защита от кз на землю.
- •107. Схемы, выбор параметров и область использования дифференциальных защит трансформаторов.
- •108. Защита и автоматика асинхронных электродвигателей напряжением выше 1 кВ.
- •109. Защита и автоматика синхронных электродвигателей напряжением 1 кВ.
- •110. Каковы преимущества испытания высоким напряжением оборудования, работающего под переменным напряжением?.
- •111. Каковы недостатки испытания высоким напряжением оборудования, работающего под переменным напряжением?.
- •112. Из каких элементов состоит высоковольтная испытательная установка переменного и постоянного напряжения? Каковы признаки недопустимых повреждений при испытании переменным напряжением?.
- •113. Каковы методы измерения высокого напряжения? Какова длительность испытаний при переменном и постоянном напряжении.
- •114. Каковы основные виды пробоев твердого диэлектрика? Каковы характерные отличия электрического пробоя от электротеплового пробоя твердого диэлектрика.
- •115. За чет чего происходит разогрев диэлектрика при электротепловом пробое? Как и почему зависит пробивное напряжение от толщины диэлектрика? Почему возникают частичные разряды в твердом диэлектрике.
- •116. Какие факторы влияют на электрическую прочность трансформаторного маска? Почему необходимо проводить несколько пробоев маска и зачем установлен пятиминутный перерывы между пробоями маска?.
- •117. Что такое грозовые перенапряжения и почему они возникают? Как влияет величина заземления опоры на значение перенапряжения?.
- •1 18. Из каких составляющих складывается индуктированное перенапряжение? Как влияет величина заземления опоры на значение перенапряжения?.
- •119. Как определяется вероятность перекрытия изоляции при грозовых перенапряжениях? Когда возникают наибольшие перенапряжения на вл при ударе молнии? Из чего состоит молниеотвод?.
- •120. Как учитывается сезонное изменение сопротивление грунта? Каков принцип защиты высоковольтного оборудования подстанций с помощью рв и опн? Из каких основных элементов состоят рв и опн?.
- •121. Чем отличаются разрушающие от неразрушающих методов испытания изоляции? Каковы основные методы неразрушающих испытаний применяющихся для профилактического контроля внутренней изоляции?.
- •122. Методы расчёта линейных электрических цепей.
- •123. Активный и пассивный двухполюсники. Методы эквивалентного генератора.
- •124. Вольтамперные характеристики нелинейных элементов.
- •125. Общая характеристика методов расчёта нелинейных электрических цепей постоянного тока.
- •126. Магнитная цепь, её разновидности. Закон полного тока. Магнитодвижущая сила.
- •4 .1. Магнитное поле и его параметры
- •4.2. Магнитные цепи
- •4.3. Закон полного тока
- •127. Методы расчёта магнитных цепей. Веберамперные характеристики. Законы Кирхгофа для магнитных цепей.
- •1 1.4.2. Законы магнитных цепей
- •11.4.3. Аналогия электрических и магнитных цепей
- •128. Определение мдс неразветвлённой магнитной цепи по заданному потоку и обратная задача.
- •1 1.4.4. Расчет неразветвленной магнитной цепи
- •11.4.5. Расчет магнитной цепи с двумя узлами
- •129. Явление электромагнитной индукции. Явление самоиндукции и эдс самоиндукции, индуктивность.
- •130. Принцип взаимности взаимной индукции. Коэффициент связи магнитосвязанных контуров. Магнитная энергия системы контуров с токами. Механические усилия в магнитном поле.
- •131. Синусоидальный ток в активном сопротивлении. Индуктивность в цепи синусоидального тока. Конденсатор в цепи синусоидального тока.
- •1. Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •132. Основы символического метода расчёта цепей синусоидального тока. Комплексное сопротивление, закон Ома для цепи синусоидального тока.
- •133. Комплексная проводимость, треугольники сопротивлений и проводимостей.
- •134. Методы расчёта цепей синусоидального тока. Законы Кирхгофа в символической форме записи.
- •135. Резонанс токов, резонанс напряжений.
- •137. Активная, реактивная и полная мощности трёхфазной системы.
- •138. Методы численного анализа данных.
- •143. Что вы знаете об обобщенной электрической машине? Допущения, принимаемые в теории обобщенной электрической машины. Система уравнений обобщенной электрической машины.
- •144. Распределительные устройства и схемы соединений. Оперативные переключения на подстанциях.
- •145. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Условия работы проводников и изоляции при длительном нагреве.
- •146. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Нагрев токоведущих частей при длительном протекании тока.
- •147. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях.
- •148. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Тепловой расчет проводников при длительном протекании тока.
- •149. Выключатели высокого напряжения. Общие сведения о выключателях и их характеристиках.
- •150. Выключатели высокого напряжения. Масляные баковые выключатели.
- •151. Выключатели высокого напряжения. Масляные малообъёмные выключатели.
- •152. Выключатели высокого напряжения. Принципы работы воздушных выключателей. Конструкции воздушных выключателей.
- •153. Выключатели высокого напряжения. Воздухонаполненные выключатели
- •154. Выключатели высокого напряжения. Вакуумные выключатели.
- •159. Выбор электрических аппаратов распределительных устройств. Оперативные переключения на подстанциях.
- •160. Синхронные генераторы. Нормальные параметры и допустимые условия работы генераторов.
- •1 61. Выбор электрических аппаратов распределительных устройств. Гашение поля.
- •162. Выбор электрических аппаратов распределительных устройств. Параллельная работа генераторов.
- •163. Силовые и измерительные трансформаторы. Регулирование напряжения трансформаторов.
- •164. Силовые и измерительные трансформаторы. Параллельная работа трансформаторов.
- •165. Расчетные электрические нагрузки промышленных электрических сетей: общие сведения о графиках электрических нагрузок, характеристики электрических нагрузок; определение расчетной нагрузки.
- •166. Термодинамические процессы, происходящие в проводах и кабелях электрических сетей при протекании по ним тока: нагревание и охлаждение проводов.
- •167. Термодинамические процессы, происходящие в проводах и кабелях электрических сетей при протекании по ним тока: выбор плавких предохранителей по условиям нагрева.
- •По напряжению (формула (6.8.1));
- •По отключающей способности (формула (6.8.6));
- •169. Конструктивные выполнения электрических сетей: конструктивное выполнение сетей напряжением до 1 кВ.
- •170. Электрический расчет электрических сетей: выбор оптимальных сечений проводов и жил кабелей линий электропередач.
- •171. Электрический расчет электрических сетей: расчет заземляющего устройства электроустановок.
- •172. Виды и системы электрического освещения: основы светотехники; осветительные электроустановки, электрические сети осветительных установок.
- •173.Компенсация реактивной мощности: компенсирующие устройства; размещение компенсирующие устройства.
- •14.3. Компенсация реактивной мощности
- •174. Какова классификация линий электропередачи переменного тока ?.
99. Токовые защиты с измерительными органами тока и напряжения.
И
змерительная
часть защиты содержит реле тока и реле
напряжения, что повышает чувствительность
токовых отсечек (первой и второй ступеней
защиты). Третья ступень – максимальная
токовая защита с комбинированным
измерительным органом – применяется
в качестве защиты генераторов и
трансформаторов от внешних КЗ. Выбор
параметров защиты рассмотрим на примере
токовой отсечки без выдержки времени.
На рис. 2.12 приведена линия с односторонним питанием в блоке с трансформатором Т. Кривая 1 – изменение остаточного напряжения Uост на шинах (действующее значение периодической составляющей при t = 0) по мере приближения точки трехфазного КЗ к шинам подстанции А. При других многофазных КЗ аналогично изменяется Uост между поврежденными фазами.
В схеме токовой отсечки, как правило, используют три минимальных реле напряжения. Параметрами этой защиты являются ток I'c.з и напряжение U'c.з . Путем согласования их между собой удается расширить зону действия защиты, обеспечивая селективность при внешних КЗ в любых режимах питающей системы.
Ток
I'c.з определяется исходя из требования
достаточной чувствительности защиты
по току при металлическом двухфазном
КЗ в конце защищаемой линии (точка К2):
где
К'чА – коэффициент чувствительности
по току.
Из
рис. 2.12 видно, что ток I(к .з при перемещении
точки К3 изменяется по кривой 3, а ток
I'с.з определяется прямой 4. Для обеспечения
правильной работы защиты ток I'с.з
отстраивается от Iраб.max по условию
Окончательно выбирается по большему значению из (2.9) и (2.10).
Для
исключения неселективной работы защиты
при внешних КЗ напряжение выбирают
меньше Uост в месте включения защиты
(на шинах А) при трехфазном КЗ за
трансформатором (точка К1). Предполагается,
что при этом по линии проходит ток
т. е.
или
с учетом коэффициента надежности
(отстройки) К'над = 1,2
При
таком выборе напряжения U'с.з исключается
срабатывание защиты при любых токах
повреждения, проходящих по линии при
внешних КЗ. Так, при
селективность
действия защиты достигается несрабатыванием
реле тока, а при
–
не действием реле напряжения, т. к. при
этом
Реле напряжения не должно срабатывать в нормальном режиме, поэтому вторым условием выбора U'с.з является отстройка от Uраб.max по условию
При КЗ в конце защищаемой линии (точка К2) защита должна обладать достаточной чувствительностью по напряжению. Допустимый минимальный Кv'ч = 1,4...1,5.
Если по условиям чувствительности значение U'с.з необходимо принять больше расчетного, то нужно увеличить и ток I'с.з , чтобы сохранить условие (2.11). В противном случае селективность защиты при внешних КЗ. нарушается. Для второй ступени защиты расчет параметров защиты производится аналогично.
100. Защита от замыкания на землю, реагирующая на токи и напряжения нулевой последовательности установившегося режима.
Устройство общей неселективной сигнализации от замыкания на землю. Замыкание на землю одной фазы в сетях с изолированной или заземленной через дугогасящий реактор нейтралью не является аварией. Электроприемники, включенные на междуфазное напряжение, продолжают нормально работать, что позволяет выполнить защиту от замыкания на землю, действующую на сигнал.
В
сетях простой конфигурации допускается
применение только общего устройства
неселективной сигнализации, контролирующего
состояние изоляции в системе данного
напряжения. На рис. 3.1, а
представлена схема устройства на трех
минимальных реле напряжения КV,
включенные на фазное напряжение. На
рис. 3.1, б
– одно максимальное реле напряжения,
включенное на напряжение нулевой
последовательности. Устройство
сигнализации обычно подключается через
трансформаторы напряжения, установленные
на шинах.
Токовая защита нулевой последовательности. В протяженных сетях сложной конфигурации, когда определение поврежденного участка затруднено, наряду с рассмотренной выше защитой предусматривая селективная защита на каждом присоединении (каждой отходящей от шин линии). Обычно это токовая защита.
Для
предотвращения перехода однофазного
замыкания в междуфазное максимальный
ток замыкания на землю в сетях напряжением
3–20 кВ, имеющих железобетонные и
металлические опоры, и во всех сетях 35
кВ должен быть не более 10 А, т. е.
в сетях, не имеющих железобетонных и
металлических опор при напряжении 3–6
кВ – не более 30 А, т. е.
,
при напряжении 10 кВ – не более 20 А, т. е.
и при напряжении 15–20 кВ – не более 15 А,
т. е.
.
Таким
образом, допустимые токи замыкания на
землю обычно меньше рабочих токов
защищаемого элемента, поэтому токовая
защита от замыкания на землю выполняется
с включением реле на фильтр тока нулевой
последовательности. Защита приходит в
действие при прохождении по поврежденному
участку тока нулевой последовательности
,
обусловленного емкостью всей электрически
связанной сети без учета емкости Со
поврежденной линии. При трех отходящих
от шин линиях и однофазном замыкании,
например на первой линии, от шин по
поврежденной линии направляется ток
нулевой последовательности, обусловленный
емкостью 2-й и 3-й линии относительно
земли, т. е.
Защита
не должна срабатывать при повреждении
на других присоединениях сети, когда
по защищаемой линии проходит ток
обусловленный
собственной емкостью линии. При этом
для обеспечения недействия защиты ее
ток срабатывания выбирают по условию
Кнад
= 4...5 для защит без выдержки времени и
Кнад = 2,0...2,5 – для
з
ащит
с выдержкой времени. Без выдержки времени
выполняются защиты, действующие на
сигнал: защиты линий торфоразработок
и других сетей, находящихся в подобных
условиях. При замыкании на землю в этих
линиях для безопасности они должны
отключаться без замедления. В таких
сетях токи однофазного замыкания на
землю I(3) обычно не превышают < 1,0...1,5
А. При этом напряжение прикосновения
ограничивается на допустимом уровне
(< 40 В) и однофазные замыкания на землю
не представляют опасности для
обслуживающего персонала.
Чувствительность
защит
. Ток I(оэкв определяется по режиму с
минимально возможным числом включенных
линий.
Чувствительность защиты считается достаточной, если для воздушных линий Кч ≥ 1,5, а для кабельных ≥ 1,25.
В качестве фильтра нулевой последовательности обычно используется трансформатор тока нулевой последовательности (ТНП) ТАZ
(рис. 3.2).
При замыкании в сети на землю токи повреждения могут замыкаться как через землю, так и по проводящей оболочке кабеля, в том числе и неповрежденного, что может вызвать неправильные действия защиты. Поэтому воронку и кабель на участке от ТНП до воронки изолируют от земли, а заземляющий провод присоединяют к воронке кабеля и пропускают через отверстие магнитопровода ТНП в направлении кабеля. При таком исполнении цепей защиты токи, проходящие по броне и проводящей оболочке кабеля, компенсируются токами, возвращающимися по заземляющему проводу.
Чувствительность защиты характеризуется минимальным первичным током замыкания на землю. При использовании электромагнитного реле с ТНП можно выполнить защиту, действующую при минимальном первичном токе замыкания на землю I3 = 5 А, поэтому эту защиту нельзя применить, например, на линиях торфоразработок.
Другие виды защит от замыкания на землю, в частности направленная защита нулевой последовательности, токовая защита, реагирующая на высшие гармонические в установившемся токе нулевой последовательности, а также устройство контроля изоляции в сетях с изолированными нейтралями без использования трансформаторов напряжения подробно описаны в [1, 22], поэтому здесь не рассматриваются.
