- •Справочный материал оглавление
- •1. Параметры идеального и реального оу. Основные схемы включения оу: инвертирующая, не инвертирующая, дифференциальная, повторитель напряжения.
- •2. Схемы суммирования, дифференцирования, интегрирования. Логарифмические и антилогарифмические преобразователи.
- •3. Классификация усилителей на транзисторах, параметры усилителей.
- •4. Определение генератора импульсов, основные виды генераторов.
- •5. Функции цифровых устройств, основные понятия, клу, сумматоры, триггеры, регистры и счетчики, ацп, цап, озу, пзу.
- •6. Виды энергоресурсов, их запасы и использование.
- •7.Конструкция линий электрических сетей.
- •8.Структура топливно-энергетического комплекса. Роль тэк в экономике рф.
- •9.Информационные электрические микромашины. Тахогенераторы постоянного тока.
- •10. Информационные электрические микромашины. Сельсины.
- •11. Информационные электрические микромашины. Вращающие трансформаторы
- •12. Информационные электрические микромашины. Спец. Трансформаторы тока.
- •13 Информационные электрические микромашины. Спец. Трансформаторы напряжения.
- •14. Информационные электрические микромашины. Автотрансформаторы.
- •15. Система аскуэ.
- •16. Электроизмерительные приборы.
- •17. Поисковое оборудование. Дефектоискатели. Трассодефектоискатели и трассоискатели.
- •18. Система для локализации мест повреждений на кабельных линиях. Установка для прожига места повреждения силовых кабелей.
- •19. Необходимость компьютерного моделирования цепей, моделирующие программы.
- •27. Ремонтопригодность, долговечность, сохраняемость.
- •28. Факторы, нарушающие надежность электроснабжения потребителей.
- •29. Способы повышения надежности электроснабжения потребителей.
- •30. Надежность простейших резервированных систем. Постоянно включенный резерв.
- •31. Надежность электрических систем при общем и раздельном резервировании.
- •32. Генераторы электростанций. Синхронные генераторы.
- •33. Генераторы электростанций. Турбогенераторы.
- •34. Генераторы электростанций. Гидрогенераторы.
- •35. Генераторы электростанций. Схема возбуждения генераторов.
- •36. Генераторы электростанций. Характеристики генераторов, работающих на автономную сеть.
- •37. Генераторы электростанций. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянно частоты.
- •38. Генераторы электростанций. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности.
- •39. Основное электрическое оборудование электрических станций. Трансформаторное оборудование.
- •40. Основное электрическое оборудование электрических станций. Коммутационные и защитные аппараты высокого напряжения.
- •41. Электрические схемы электростанций и подстанций. Классификация схем распределительных устройств. Основные требования, предъявляемые к схемам распределительных устройств электроустановок.
- •42. Электрические схемы электростанций и подстанций. Схемы, применяемые на генераторном напряжении.
- •43. Электрические схемы электростанций и подстанций. Схемы, применяемые на высшем и среднем напряжениях.
- •44. Электрические схемы электростанций и подстанций. Типовая сетка схем распределительных устройств
- •45. Электрические схемы электростанций и подстанций. Структурные схемы электрических станций и подстанций
- •46. Электрические схемы электростанций и подстанций. Электроснабжение собственных нужд электростанций и подстанций
- •47. Гидроэнергетические источники энергии. Основные схемы использования водной энергии. Мощность гэс и выработка электроэнергии.
- •48. Нетрадиционные источники энергии. Солнечная энергетика.
- •49. Нетрадиционные источники энергии. Ветроэнергетика.
- •50. Нетрадиционные источники энергии. Вторичные источники ресурсов.
- •52.Устройства и функционирование тэц. Раздельная и комбинированная выработка электроэнергии и тепла. Показатели качества работы тэс
- •53. Устройство и функционирование аэс. Технологические схемы производства электроэнергии на аэс.
- •54. Схемотехника. Регулируемые источники питания, определение, классификация, потенциометр и схема Дарлингтона.
- •55. Схемотехника. Ступенчатые регуляторы.
- •56. Схемотехника. Стабилизаторы напряжения.
- •57. Схемотехника. Гираторы.
- •5 8. Схемотехника. Активные фильтры.
- •59.Схемотехника. Генераторы.
- •60. Схемотехника. Аналоговые компараторы, определение, различные схемы сравнения.
- •61. Схемотехника. Согласование сопротивлений, тепловой шум.
- •62. Схемотехника. Усилители на высоких частотах
- •63.Причины возникновения переходных процессов в электроэнергетических системах.
- •64. Основные допущения на которых базируются практические методы расчета переходных электромагнитных процессов.
- •65. Выбор выключателей по отключающей способности.
- •66. Влияние несимметрии ротора синхронной машины на переходный процесс при нарушении симметрии трехфазной цепи.
- •67. Особенности распространения токов нулевой последовательности по воздушным линиям электропередач.
- •68. Влияние переходного сопротивления в месте короткого замыкания.
- •69. Особенности простого замыкания на землю в распределительных сетях.
- •70. Влияние изменения параметров проводников на значение тока кз.
- •71. Расчетов тока кз в установках напряжением до 1000в.
- •72. Электрическая система и её элементы. Режимы и процессы. Различные виды режимов и процессов в электрических системах.
- •73. Статическая и динамическая устойчивость системы.
- •74. Параметры режима и параметры системы.
- •75. Характерные стадии переходных режимов и их влияние на оборудование электрической системы. Энергетика переходного процесса.
- •76. Критерии устойчивости и избыточная энергия.
- •77. Критерии устойчивости и избыточная мощность.
- •1 3 Лекция. Динамическая устойчивость при коротком замыкании на линии
- •78. Практические критерии режима электрической системы.
- •79. Текучесть нормального режима электрической системы.
- •80. Критерии устойчивости простейшей электрической системы.
- •81. Критерии устойчивости асинхронного двигателя.
- •82. Критерии динамической устойчивости электрической системы.
- •83. Суть метода последовательных интервалов при определении времени отключения.
- •84. Запас устойчивости электрической системы по напряжению.
- •85. Запас устойчивости электропередачи.
- •86. Схемы замещения линии электропередачи.
- •87. Схемы замещения синхронной машины.
- •8 8. Схемы замещения асинхронного двигателя.
- •8 9. Схемы замещения трансформатора.
- •90. Как можно получить расчетом и экспериментом статические характеристики комплексной нагрузки?
- •91. Статические характеристики асинхронного двигателя. Понятие критического скольжения, момента, мощности. «Опрокидывание» асинхронного двигателя.
- •92. Динамические характеристики асинхронного двигателя.
- •93. Характеристики синхронной нагрузки.
- •94. Электрический центр системы.
- •95. Защита и автоматика линий электропередачи. Основные органы токовой защиты.
- •2.1. Основные органы токовой защиты
- •96. Схемы соединения измерительных преобразователей тока и цепей тока вторичных измерительных органов.
- •97. Выбор токов и времени срабатывания максимальной токовой защиты.
- •98. Схемы токовых защит.
- •99. Токовые защиты с измерительными органами тока и напряжения.
- •100. Защита от замыкания на землю, реагирующая на токи и напряжения нулевой последовательности установившегося режима.
- •101. Назначение, виды и принцип действия дифференциальных защит.
- •4.2. Принцип действия продольной дифференциальной токовой защиты
- •102. Схемы устройства автоматического повторного включения.
- •103. Схема устройства автоматического включения резерва.
- •104. Защита и автоматика трансформаторов подстанций.
- •105. Виды повреждений и ненормальных режимов работы трансформаторов.
- •106. Токовая защита трансформаторов от коротких замыканий. Токовая защита от кз на землю.
- •107. Схемы, выбор параметров и область использования дифференциальных защит трансформаторов.
- •108. Защита и автоматика асинхронных электродвигателей напряжением выше 1 кВ.
- •109. Защита и автоматика синхронных электродвигателей напряжением 1 кВ.
- •110. Каковы преимущества испытания высоким напряжением оборудования, работающего под переменным напряжением?.
- •111. Каковы недостатки испытания высоким напряжением оборудования, работающего под переменным напряжением?.
- •112. Из каких элементов состоит высоковольтная испытательная установка переменного и постоянного напряжения? Каковы признаки недопустимых повреждений при испытании переменным напряжением?.
- •113. Каковы методы измерения высокого напряжения? Какова длительность испытаний при переменном и постоянном напряжении.
- •114. Каковы основные виды пробоев твердого диэлектрика? Каковы характерные отличия электрического пробоя от электротеплового пробоя твердого диэлектрика.
- •115. За чет чего происходит разогрев диэлектрика при электротепловом пробое? Как и почему зависит пробивное напряжение от толщины диэлектрика? Почему возникают частичные разряды в твердом диэлектрике.
- •116. Какие факторы влияют на электрическую прочность трансформаторного маска? Почему необходимо проводить несколько пробоев маска и зачем установлен пятиминутный перерывы между пробоями маска?.
- •117. Что такое грозовые перенапряжения и почему они возникают? Как влияет величина заземления опоры на значение перенапряжения?.
- •1 18. Из каких составляющих складывается индуктированное перенапряжение? Как влияет величина заземления опоры на значение перенапряжения?.
- •119. Как определяется вероятность перекрытия изоляции при грозовых перенапряжениях? Когда возникают наибольшие перенапряжения на вл при ударе молнии? Из чего состоит молниеотвод?.
- •120. Как учитывается сезонное изменение сопротивление грунта? Каков принцип защиты высоковольтного оборудования подстанций с помощью рв и опн? Из каких основных элементов состоят рв и опн?.
- •121. Чем отличаются разрушающие от неразрушающих методов испытания изоляции? Каковы основные методы неразрушающих испытаний применяющихся для профилактического контроля внутренней изоляции?.
- •122. Методы расчёта линейных электрических цепей.
- •123. Активный и пассивный двухполюсники. Методы эквивалентного генератора.
- •124. Вольтамперные характеристики нелинейных элементов.
- •125. Общая характеристика методов расчёта нелинейных электрических цепей постоянного тока.
- •126. Магнитная цепь, её разновидности. Закон полного тока. Магнитодвижущая сила.
- •4 .1. Магнитное поле и его параметры
- •4.2. Магнитные цепи
- •4.3. Закон полного тока
- •127. Методы расчёта магнитных цепей. Веберамперные характеристики. Законы Кирхгофа для магнитных цепей.
- •1 1.4.2. Законы магнитных цепей
- •11.4.3. Аналогия электрических и магнитных цепей
- •128. Определение мдс неразветвлённой магнитной цепи по заданному потоку и обратная задача.
- •1 1.4.4. Расчет неразветвленной магнитной цепи
- •11.4.5. Расчет магнитной цепи с двумя узлами
- •129. Явление электромагнитной индукции. Явление самоиндукции и эдс самоиндукции, индуктивность.
- •130. Принцип взаимности взаимной индукции. Коэффициент связи магнитосвязанных контуров. Магнитная энергия системы контуров с токами. Механические усилия в магнитном поле.
- •131. Синусоидальный ток в активном сопротивлении. Индуктивность в цепи синусоидального тока. Конденсатор в цепи синусоидального тока.
- •1. Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •132. Основы символического метода расчёта цепей синусоидального тока. Комплексное сопротивление, закон Ома для цепи синусоидального тока.
- •133. Комплексная проводимость, треугольники сопротивлений и проводимостей.
- •134. Методы расчёта цепей синусоидального тока. Законы Кирхгофа в символической форме записи.
- •135. Резонанс токов, резонанс напряжений.
- •137. Активная, реактивная и полная мощности трёхфазной системы.
- •138. Методы численного анализа данных.
- •143. Что вы знаете об обобщенной электрической машине? Допущения, принимаемые в теории обобщенной электрической машины. Система уравнений обобщенной электрической машины.
- •144. Распределительные устройства и схемы соединений. Оперативные переключения на подстанциях.
- •145. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Условия работы проводников и изоляции при длительном нагреве.
- •146. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Нагрев токоведущих частей при длительном протекании тока.
- •147. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях.
- •148. Нагрев токоведущих частей электрооборудования при нормальной работе и при коротких замыканиях. Тепловой расчет проводников при длительном протекании тока.
- •149. Выключатели высокого напряжения. Общие сведения о выключателях и их характеристиках.
- •150. Выключатели высокого напряжения. Масляные баковые выключатели.
- •151. Выключатели высокого напряжения. Масляные малообъёмные выключатели.
- •152. Выключатели высокого напряжения. Принципы работы воздушных выключателей. Конструкции воздушных выключателей.
- •153. Выключатели высокого напряжения. Воздухонаполненные выключатели
- •154. Выключатели высокого напряжения. Вакуумные выключатели.
- •159. Выбор электрических аппаратов распределительных устройств. Оперативные переключения на подстанциях.
- •160. Синхронные генераторы. Нормальные параметры и допустимые условия работы генераторов.
- •1 61. Выбор электрических аппаратов распределительных устройств. Гашение поля.
- •162. Выбор электрических аппаратов распределительных устройств. Параллельная работа генераторов.
- •163. Силовые и измерительные трансформаторы. Регулирование напряжения трансформаторов.
- •164. Силовые и измерительные трансформаторы. Параллельная работа трансформаторов.
- •165. Расчетные электрические нагрузки промышленных электрических сетей: общие сведения о графиках электрических нагрузок, характеристики электрических нагрузок; определение расчетной нагрузки.
- •166. Термодинамические процессы, происходящие в проводах и кабелях электрических сетей при протекании по ним тока: нагревание и охлаждение проводов.
- •167. Термодинамические процессы, происходящие в проводах и кабелях электрических сетей при протекании по ним тока: выбор плавких предохранителей по условиям нагрева.
- •По напряжению (формула (6.8.1));
- •По отключающей способности (формула (6.8.6));
- •169. Конструктивные выполнения электрических сетей: конструктивное выполнение сетей напряжением до 1 кВ.
- •170. Электрический расчет электрических сетей: выбор оптимальных сечений проводов и жил кабелей линий электропередач.
- •171. Электрический расчет электрических сетей: расчет заземляющего устройства электроустановок.
- •172. Виды и системы электрического освещения: основы светотехники; осветительные электроустановки, электрические сети осветительных установок.
- •173.Компенсация реактивной мощности: компенсирующие устройства; размещение компенсирующие устройства.
- •14.3. Компенсация реактивной мощности
- •174. Какова классификация линий электропередачи переменного тока ?.
27. Ремонтопригодность, долговечность, сохраняемость.
Надежность электроснабжения является сложным свойством, которое в зависимости от назначения объекта и условий его применения состоит из сочетания свойств: безотказности, долговечности, ремонтопригодности и сохраняемости. Рассмотрим каждое из этих свойств по отдельности.
Безотказность – свойство объекта непрерывно сохранять работоспособность в течение некоторого времени или некоторой наработки.
Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технических обслуживаний и ремонтов.
Ремонтопригодность – свойство объекта, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказов, повреждений и устранению их последствий путем проведения технических обслуживаний и ремонтов.
Сохраняемость – свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.
Для объектов, являющихся потенциальным источником опасности, к которым следует относить и электроэнергетические объекты, важным понятием является также такое понятие как «безопасность». Кроме этого, для таких объектов вводятся понятия «устойчивость» и «живучесть», которые также, как и безопасность хотя и не входят в общее понятие надежности, но требуют их учета при проектировании и эксплуатации.
28. Факторы, нарушающие надежность электроснабжения потребителей.
Чтобы решить проблему повышения надежности СЭС, необходимо каждый случай преждевременного отключения рассматривать как недопустимое событие и устанавливать истинную причину нарушения работоспособности. При проведении анализа отказов следует учитывать все факторы, приводящие к тому или иному виду отказа электрооборудования.
Все причины отказов могут быть сведены в три основные группы: • ошибки при проектировании и изготовлении; • ошибки эксплуатации; • внешние причины, не зависящие от данного электротехнического изделия.
Типовыми дефектами проектирования являются: • недостаточная защита узлов и механизмов от внешних воздействий; • неправильный выбор режимов работы электрооборудования; • ошибки в учете распределения токов и напряжений в узлах нагрузки; • неправильный расчет несущей способности конструкций; • неправильный выбор материалов; • ошибки в моделировании и учете эксплуатационных нагрузок; • дефекты из-за неправильного состава материалов, дефекты сварке, обработке поверхностей, сборке.
Основными недостатками эксплуатации являются: • нарушение условий применения электрооборудования; • отсутствия четкой стратегии проведения мероприятий по поддержанию работоспособного состояния электрооборудования; • несвоевременное и некачественное проведение эксплуатационно - технических мероприятий по обслуживанию электрооборудования; • неправильные действия или бездействие электротехнического персонала в аварийных ситуациях; • низкая квалификация обслуживающего персонала; • недостаточное обеспечение ЗИП; • несоблюдение правил технической эксплуатации электрооборудования.
При рассмотрении причин выхода из строя электрооборудования особое место занимают те воздействия, которые не зависят от самого электрооборудования и работы эксплуатационных подразделений, т.е. внешнее воздействия. Рассмотрим их более подробно.
Внешние воздействия связаны с влиянием на электрооборудование, влажности, механических нагрузок.
Существенное влияние на температуру внутри электротехнических аппаратов оказывает температура окружающей среды. Сезонные температуры достигают 60 - 80°С, а суточные 20 - 40°С.
При воздействии солнечных лучей возможно повышение температуры до 40 °С, что приводит к повышению температуры отдельных электротехнических изделий и к повышению коэффициента нагрузки.
Немаловажным фактором являются скорость и цикличность изменения температуры в аппаратах. Неблагоприятное воздействие на надежность оказывают как отрицательные, так и положительные изменения температуры. Особенно заметно возрастание интенсивности отказов при положительных температурах. Так, например, при увеличении температуры с 20 до 85°С увеличивается интенсивность отказов полупроводниковых элементов в 2—3 раза.
Повышение температуры способствует распаду органических материалов‚ ухудшению изоляционных свойств различного рода заливок, обмоток, ухудшению механических свойств полимеров, что приводит к деформации деталей и выходу их из строя. Периодические смены низких и высоких температур особенно быстро приводят к разрушению обмоток трансформаторов, двигателей и другого электрооборудования.
При отрицательных температурах пластмассы теряют прочность, резиновые изделия становятся хрупкими, металлические изделия делаются ломкими. В образовавшиеся трещины изоляции попадает влага, снижая электрическую прочность изоляции.
