Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
контр.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
81.88 Кб
Скачать

Квадратомическое дерево

Иерархическая структура данных, известная как квадратомическое дерево, используется для накопления и хранения географической информации. В этой структуре двухмерная геометрическая область рекурсивно подразделяется на квадраты, что определило название данной модели.

На рисунке показан фрагмент двухмерной области QT, состоящей из 16 пикселей. Каждый пиксель обозначен цифрой. Вся область разбивается на четыре квадранта: А, В, С, D. Каждый из четырех квадрантов является узлом квадратомического дерева. Большой квадрант QT становится узлом более высокого иерархического уровня квадратомического дерева, а меньшие квадранты появляются на более низких уровнях. Технология построения квадратомического дерева основана на рекурсивном разделении квадрата на квадранты и подквадранты до тех пор, пока все подквадранты не станут однородными по отношению к значению изображения (цвета) или пока не будет достигнут предопределенный заранее наименьший уровень разрешения.

Если регион состоит из 2n х 2n пикселей, то он полностью представлен на уровне n, а единичные пиксели находятся на нулевом уровне. Квадрант уровня 1 (0<1<n) содержит 21 х 21 пикселей, всего 41.

Преимущество такой структуры состоит в том, что регулярное разделение обеспечивает накопление, восстановление и обработку данных простым и эффективным способом. Простота проистекает из геометрической регулярности разбиения, а эффективность достигается за счет хранения только узлов с данными, которые представляют интерес.

Фрагмент растра, квантованный для построения квадратомического дерева

Квадратомическое дерево в виде Е-структуры

Поскольку квадратомическое дерево известно как пространственно-рациональный способ представления сгруппированных однородных ми сопряженных изображений, их преимущество над векторной репрезентацией многих (но не всех) пространственных алгоритмов относительно затрат машинного времени весьма существенно. Первоначально большинство приложений моделей квадратомических деревьев было сделано для обработки изображений. Из этой области данная модель была перенесена в ГИС. Модели, основанные на квадратомических деревьях, обеспечивают расчеты площадей, центроидные определения, распознавание образов, выявление связанных компонентов, определение соседства, преобразование расстояний, разделение изображений, сглаживание данных и усиление краевых эффектов. Вследствие этого появилась возможность использовать квадратомические деревья для хранения географических данных. Однако при этом требуется развитие процедур для превращения растровых данных в формат квадратомического дерева и усовершенствование техники линейного кодирования.

Последние исследования показали, что для больших квадратомических деревьев наиболее подходящей структурой является линейное квадродерево. В нем каждый листовой узел представлен линейным числовым кодом, который базируется на упорядоченном списке узловых точек прародителей. Последующее преобразование дерева в код достигается использованием битового уровня или модулярной арифметики. Система линейных кодов обеспечивает эффективную связь между структурами пространственных данных и алгоритмами, применяемыми в вычислительной геометрии для решения проблем восстановления прямоугольников и определения ближайшего соседа.

Иерархические модели, как и прочие, могут описывать системы, данные и схемы процессов обработки данных. Следует, однако, подчеркнуть, что правильно составленная иерархическая схема должна содержать в качестве записей (вершин) атрибуты или агрегаты атрибутов либо типы сущностей. Атрибуты или агрегаты атрибутов соответствуют множествам или расширенным множествам. Дуги могут использоваться для представления агрегации двух атрибутов в тип сущности или двух типов сущности в тип связи. На практике часто в запись вставляют не только сущности базы данных, но и связи. Такая схема описывается моделью сущность-связь и будет рассмотрена ниже.