- •(Интерактивный курс)
- •Саратов 2012
- •Предисловие
- •Часть I. Круговорот воды в природе и водные ресурсы земли Модуль 1.1. Вода на земном шаре.
- •Водные ресурсы земли
- •1.1.2. Изменение количества воды на земном шаре
- •1.1.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •1.1.4. Круговорот воды на земном шаре
- •1.1.5. Глобальный круговорот воды (гидрологический цикл)
- •1.1.6. Внутриматериковый влагооборот
- •1.1.7. Водообмен
- •1.1.8. Влияние антропогенного фактора на круговорот воды
- •Контрольные вопросы
- •М одуль 1.2. Физические основы гидрологических процессов
- •1.2.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •1.2.2. Водный баланс
- •1.2.3. Баланс содержащихся в воде веществ
- •1.2.4. Тепловой баланс
- •1.2.5. Основные закономерности движения природных вод
- •1.2.6. Расход, энергия, работа и мощность водных потоков
- •1.2.7. Силы, действующие в водных объектах
- •1.2.8. Влияние гидрологических процессов на природные условия
- •Контрольные вопросы
- •Ч асть II. Процессы и компоненты в водных системах Модуль 2.1. Водные экосистемы, процессы и компоненты природных вод
- •2.1.1. Водные экосистемы
- •2.1.2. Процессы и компоненты природных вод
- •2.1.3. Наземный и грунтовый сток
- •2.1.4. Уровенный и скоростной режим рек
- •2.1.5. Тепловой режим и условия освещенности
- •2.1.6. Взвешенные и растворенные вещества
- •2.1.7. Поверхностные воды как сложная система
- •2.1.8. Общие сведения о физико-химических реакциях в природных водах
- •2.1.9. Растворение газов в природных водах
- •2.1.10. Биологическая продукция экосистем рек
- •Контрольные вопросы
- •М одуль 2.2. Русловой процесс
- •История развития понятия «русловые процессы»
- •Взаимодействие потока и русла (взаимосвязь, взаимоуправление, саморегулирование)
- •2.3.3. Типы руслового процесса
- •Типы речных пойм и их связь с типами руслового процесса
- •2.3.5. Степень врезанности и ширина поймы, как условия развития речного русла
- •Контрольные вопросы
- •Словарь терминов
- •Содержание
- •Гидрологические процессы и явления
1.2.5. Основные закономерности движения природных вод
Свойство текучести обусловливает постоянное движение воды в природных объектах: внешние и внутренние силы перераспределяют ее во времени и пространстве. Движется и лед, обладающий пластичностью.
Для
анализа основных закономерностей
движения воды введем некоторые
обозначения. Выразим через u
скорость течения в любой точке, через
v
среднюю скорость движения всей массы
воды (в слое, потоке и т. д.), причем в
общем случае примем, что
и
,
где х, у, z
–
пространственные координаты, t
–
время. Продольную ось х
обычно направляют вдоль потока параллельно
его поверхности, у
–
поперек потока, вертикальную ось z
–
от поверхности ко дну.
Движение воды можно классифицировать по изменению гидравлических характеристик водного потока во времени и в пространстве, по гидродинамическому режиму (ламинарное, турбулентное), по состоянию водной поверхности (спокойное, бурное), а также по действующим физическим силам.
Движение
воды считают установившимся (стационарным),
если скорость течения во времени не
изменяется (
),
и неустановившимся (нестационарным),
если скорость течения во времени –
величина
переменная (
).
Установившееся движение, в свою очередь,
подразделяют на равномерное, если
скорость течения вдоль потока остается
неизменной (
),
и неравномерное, если скорость течения
вдоль потока изменяется (
).
При равномерном движении равна нулю и
полная производная скорости (
).
Выделяют два гидродинамических режима движения воды: ламинарный и турбулентный. Слово «ламинарный» происходит от латинского слова, означающего «слоистый», слово «турбулентный» – от латинского слова, означающего «беспорядочный». И действительно, при ламинарном режиме частицы воды движутся по параллельным траекториям без перемешивания; при турбулентном режиме их движение имеет хаотический характер, в потоке формируются вихри и активизируются процессы перемешивания воды, скорости течения непрерывно изменяются по величине и направлению. Ламинарный режим может переходить в турбулентный при увеличении скорости течения. Гидродинамический режим потока характеризуется безразмерным числом Рейнольдса Re, равным
(11)
где v – средняя скорость течения, м/с; h – глубина потока или толщина слоя воды, м; v — кинематический коэффициент вязкости, м2/с; зависящий от характера жидкости и ее температуры.
Критическое значение числа Рейнольдса Rekp, соответствующее переходу от ламинарного к турбулентному режиму, лежит приблизительно в диапазоне от 300 до 3000.
Если фактическое число Рейнольдса в водном потоке больше 3000 – режим турбулентный, меньше 300 – ламинарный, в диапазоне Re от 300 до 3000 – переходный.
В реках, озерах, морях и океанах число Re всегда значительно больше критического значения, и режим движения воды турбулентный. Ламинарный режим характерен для подземных вод в мелкозернистых грунтах (вследствие малых размеров пор и малых скоростей движения воды) и для ледников (вследствие очень большой вязкости льда и очень малых скоростей его движения).
От гидродинамического режима зависит внутреннее трение в потоке и вертикальное распределение скоростей течения.
В
ламинарном потоке возникающее между
смежными слоями воды внутреннее
касательное напряжение (трение на
единицу поверхности) зависит от вязкости,
которая, в свою очередь, изменяется с
изменением температуры, и равно
,
где
–
динамический коэффициент вязкости
(
),
du/dz
–
вертикальный градиент скорости течения.
В турбулентном потоке внутреннее
касательное напряжение зависит уже не
от вязкости воды, а от так называемого
коэффициента турбулентного обмена А,
характеризующего интенсивность
турбулентного перемешивания вод:
, (12)
где du/dz – вертикальный градиент осредненной во времени скорости течения. Для определения коэффициента А обычно используют эмпирические зависимости, связывающие его с глубиной, скоростью течения и другими характеристиками потока.
В ламинарном потоке вертикальное распределение скоростей течения описывается формулой параболы с горизонтальной осью, расположенной на поверхности потока. Максимальная скорость находится на поверхности потока, у дна скорость течения равна нулю. Для турбулентного потока исследователи предлагают различные математические выражения для распределения скоростей течения по глубине: логарифмическая кривая, часть эллипса, парабола и т. д. Максимальная скорость во всех этих случаях также находится на поверхности потока. Важно подчеркнуть, что скорость течения в турбулентном потоке (и это подтверждается данными наблюдений) изменяется по вертикали более плавно, чем в ламинарном, причем у дна скорость течения не равна нулю. Этим объясняются размывающее воздействие турбулентных потоков (в отличие от ламинарных) на дно и их способность перемещать частицы наносов по дну. По состоянию водной поверхности потоки делят на спокойные и бурные. Спокойные потоки имеют плавную форму водной поверхности, препятствия обтекаются ими также плавно. Бурные потоки имеют неровную форму водной поверхности со стоячими волнами, в местах препятствий образуются резкие перепады уровня. Для определения состояния потока (спокойное или бурное) используют безразмерное число Фруда Fr, равное
(13)
где h – глубина потока, м; g – ускорение свободного падения, м/с2. При числе Fr, равном 1, поток находится в критическом состоянии. Если чисто Фруда больше 1, то поток бурный, если меньше 1 – спокойный. Бурные потоки характерны для горных рек, спокойные – для равнинных рек и течений в водоемах.
Нельзя отождествлять бурные и турбулентные, спокойные и ламинарные потоки, так как характеристики этих движений воды качественно различные. Спокойные потоки, например, могут быть как ламинарными, так и турбулентными, бурные – всегда турбулентные.
