- •Общие методические указания
- •Учебная программа
- •Рабочая программа. Содержание дисциплины
- •Лабораторный практикум
- •Литература
- •Квантово-механическое объяснение строения атома
- •Строение многоэлектронных атомов
- •Периодическая система элементов д.И. Менделеева
- •Строение атома и периодический закон
- •1.5. Свойства элементов и периодическая система
- •Примеры решения типовых задач
- •2. Строение молекул и химическая связь
- •2.1. Ковалентная связь. Метод валентных связей
- •2.2. Гибридизация атомных орбиталей
- •2.3. Ковалентные связи с участием атома углерода
- •2.4. Ионная химическая связь
- •2.5. Металлическая связь
- •2.6. Водородная связь
- •Связи, образуемые атомом н, находящимся между двумя атомами электроотрицательных элементов, называются водородными:
- •2.7. Поляризация связи и дипольный момент
- •2.8. Основные параметры молекул
- •2.9. Примеры решения типовых задач
- •3. Основы химической термодинамики
- •3.1. Некоторые понятия термодинамики
- •3.2. Понятие о функции состояния
- •3.3. Внутренняя энергия, теплота, работа
- •3.4. Первый закон термодинамики. Понятие об энтальпии
- •3.5. Тепловой эффект химической реакции
- •3.6. Термохимические расчеты
- •3.7. Понятие об энтропии и второй закон термодинамики
- •3.8. Число микросостояний (термодинамическая вероятность) и энтропия
- •3.9. Свойства энтропии. Зависимость энтропии от объема
- •Зависимость энтропии от давления
- •Зависимость энтропии от температуры
- •3.10. Энергия Гиббса и состояние химического равновесия
- •3.11. Энергия Гиббса и состояние химического равновесия
- •3.12. Примеры решения типовых задач
- •4. Основы химической кинетики
- •4.1. Основные понятия химической кинетики
- •4.2. Скорость химических реакций
- •4.3. Гомогенные химические реакции
- •4.4. Зависимость скорости гомогенной химической реакции от концентрации реагирующих веществ
- •4.5. Графический метод определения констант дифференциального кинетического уравнения
- •4.6. Зависимость концентрации реагирующих веществ от времени для реакции первого порядка. Интегральное кинетическое уравнение
- •4.7. Скорость гетерогенной химической реакции
- •4.8. Зависимость скорости химической реакции от температуры. Уравнение Аррениуса
- •4.9. Энергия активации
- •4.10. Распределение молекул по энергиям
- •4.11. Энтропия активации. Стерический фактор
- •4.12. Расчет энергии активации
- •4.13. Каталитические реакции
- •Сущность каталитического действия.
- •4.14. Химическое равновесие
- •4.14.1. Состояние равновесия
- •4.14.2. Константа равновесия
- •Изменение концентраций.
- •Влияние температуры.
- •4.15. Примеры решения типовых задач
- •5. Растворы
- •5.1.Тепловой эффект растворения
- •5.2. Растворимость
- •5.3. Концентрация растворов
- •5.4. Законы Рауля
- •Следствия закона Рауля
- •5.5. Примеры решения типовых задач
- •6. Растворы электролитов
- •6.1. Механизм процесса диссоциации
- •6.2. Сильные и слабые электролиты
- •6.3. Электролитическая диссоциация солей, кислот и гидроксидов
- •6.4. Смещение ионных равновесий
- •6.5. Ионные равновесия в растворах амфотерных электролитов
- •6.6. Ионное равновесие в гетерогенных системах. Произведение растворимости
- •6.7. Смещение равновесий в ионных реакциях. Направление ионных реакций
- •6.8. Ионное произведение воды
- •6.9. Водородный показатель среды (рН)
- •6.10. Гидролиз солей
- •6.11. Примеры решения типовых задач
- •7. Окислительно-восстановительные реакции
- •7.1. Понятие о степени окисления
- •7.2. Окислительно-восстановительные пары и их количественная характеристика
- •7.3. Направление окислительно-восстановительных реакций
- •7.4. Составление уравнений окислительно- восстановительных реакций
- •7.5. Влияние среды на характер окислительно-восстановительных реакций
- •7.6. Виды реакций окисления-восстановления
- •7.7. Примеры решения типовых задач
- •8. Электрохимические процессы
- •8.1 Основные понятия, определения
- •8.2. Электродные потенциалы
- •8 .3. Стандартный водородный электрод
- •8.4. Ряд стандартных электродных потенциалов (ряд напряжений металлов)
- •8.5. Уравнение Нернста
- •8.6. Потенциалы газовых электродов
- •Cхемы щелочных аккумуляторов:
- •На катоде – восстановление кислорода
- •8.8. Примеры решения типовых задач
- •9. Электролиз
- •9.1. Основные понятия электролиза
- •9.2. Последовательность протекания электродных процессов при электролизе
- •9.2.1. Электролиз расплава электролита
- •2NaCl расплав
- •4NaОНрасплав
- •9.2.2. Электролиз раствора электролита
- •9.3. Законы Фарадея в электролизе
- •Объединяя оба закона, можно записать
- •Уравнение (9.2) может быть записано как
- •9.4. Применение электролиза
- •9.5. Примеры решения типовых задач
- •10. Коррозия металлов
- •10.1. Классификация коррозионных процессов
- •10.2. Коррозия металлов в растворах электролитов при различных значениях рН
- •10.3. Поляризационные явления в гальванических элементах и при коррозии металлов
- •10.4. Защита металлов от коррозии
- •10.5. Примеры решения типовых задач
- •11. Минеральные вяжущие вещества
- •11.1. Природные силикаты
- •11.2. Понятие о минеральных вяжущих веществах
- •11.3. Процессы твердения минеральных вяжущих веществ
- •11.4. Характеристика минеральных вяжущих веществ
- •1000°С ангидритовое вяжущее вещество.
- •12. Экспериментальная часть
- •12.1. Лабораторная работа «Ионные равновесия в растворах электролитов»
- •12.2. Лабораторная работа «Коррозия и защита металлов»
- •13. Контрольные вопросы
- •13.1. Строение атома. Химическая связь.
- •13.2. Основы химической термодинамики
- •62. Рассчитайте количество теплоты, выделяемое при полном
- •13.3. Химическая кинетика
- •13.4. Свойства растворов, способы выражения концентраций
- •13.5. Растворы электролитов
- •13.6. Окислительно-восстановительные реакции
- •13.7. Электрохимические процессы
- •13.8. Электролиз
- •13.9. Коррозия металлов
- •Приложение
- •Термодинамические свойства веществ (при 298,15 к)
- •Стандартные окислительно-восстановительные потенциалы (Ео298) в водных растворах
- •Вопросы для подготовки к зачету по курсу «Химия» для студентов заочного факультета
- •Вопросы для подготовки к экзамену по курсу «Химия» для студентов заочного факультета
- •Силикаты. Минеральные вяжущие вещества
- •Элементы органической химии. Органические вяжущие вещества
Примеры решения типовых задач
Пример 1. По положению в периодической системе: а) рассмотрите строение электронных оболочек атома кремния; б) составьте электронную формулу и графическую схему заполнения электронами валентных орбиталей атома в нормальном и возбужденном состояниях.
Решение.
а) Кремний Si имеет порядковый номер 14 и находится в третьем периоде главной подгруппы IV A - группы периодической системы. Следовательно, в атоме кремния 14 электронов, которые расположены на 3-х энергетических уровнях. На внешнем валентном уровне находятся 4 (3s23p2), т.е. кремний относится к р - электронному семейству;
б) Электронная формула атома кремния: 14Si 1s22s22p63s23p2.
Валентными орбиталями в этом атоме являются орбитали внешнего (третьего) электронного уровня, т.е. 3s- и Зр-орбитали и не заполненные Зd-орбитали. Графическая схема заполнения электронами этих орбиталей в нормальном состоянии имеет следующий вид (в соответствии с правилом Гунда):
3 |
↑↓ |
↑ |
↑ |
|
2 |
↑↓ |
↑↓ |
↑↓ |
↑↓ |
1 |
↑↓ |
|
p |
|
|
s |
|
|
|
При затрате некоторой энергии один из Зs-электронов атома кремния может быть переведен на Зр-орбиталь, при этом атом переходит в возбужденное состояние, которому соответствует электронная конфигурация: 1s22s22p63s13p3
3 |
↑ |
↑ |
↑ |
↑ |
2 |
↑↓ |
↑↓ |
↑↓ |
↑↓ |
1 |
↑↓ |
|
p |
|
|
s |
|
|
|
Максимальная валентность определяется максимальным числом неспаренных электронов, которые могут быть на валентных орбиталях, т.е. для атома Si равна 4. Формула оксида – SiO2.
Кремний проявляет неметаллические свойства, образуя кремневую кислоту H2SiO3.
Пример 2. Составьте схемы распределения электронов по энергетическим ячейкам в атоме СI и ионе CI−.
Решение. Электронная формула хлора CI0: 1s22s22p63s2Зр53d0. При переходе в ионное состояние происходят следующие изменения конфигурации валентного уровня:
Сl0
Сl−
...
3s23p63d0.
Тогда схемы распределения электронов по энергетическим ячейкам будут выглядеть следующим образом:
3 |
↑↓ |
↑↓ |
↑↓ |
↑ |
|
|
|
3 |
↑↓ |
↑↓ |
↑↓ |
↑↓ |
2 |
↑↓ |
↑↓ |
↑↓ |
↑↓ |
|
|
|
2 |
↑↓ |
↑↓ |
↑↓ |
↑↓ |
1 |
↑↓ |
|
p |
|
|
|
|
1 |
↑↓ |
|
p |
|
|
s |
|
|
|
|
|
|
|
s |
|
|
|
Cl0 Cl- |
||||||||||||
Пример 3. Объясните, на каком основании селен 34Se и молибден 42Мо находятся в одной группе, но в разных подгруппах периодической системы? Какие химические свойства проявляют эти элементы?
Решение. Атомы Se и Мо имеют следующие электронные конфигурации:
Se − 1s22s22р63s2Зр64s23d104р4;
Mo − 1s22s22р63s2Зр64s23d105s14d5.
Валентные электроны: Se − 4s24p4; Mo − 5s14d5. Таким образом, эти элементы не являются электронными аналогами и не должны размещаться в одной и той же подгруппе одной группы, но в образовании связей у них может участвовать одинаковое максимальное число электронов – 6 . У селена – это 4s24p4, у молибдена – 5s14d5, где 4d5-электроны предпоследнего (n–1) недостроенного энергетического уровня. На этом основании оба элемента помещены в одну VI группу периодической системы, но в разные подгруппы (Se – VI А, Мо – VI В).
Внешний энергетический уровень атома селена содержит 6 , что определяет его неметаллические свойства. Молибден – металл, так как у него на внешнем энергетическом уровне 2 , но если в образовании связей участвуют 4d-электроны, то Мо может проявлять и неметаллические свойства.
Формулы высших оксидов: SеO3; МоО3.
