- •Правила работы с оборудованием: Центрифуги
- •1. Общая характеристика органических соединений.
- •1.1 Основные понятия и классификация органических соединений
- •1.3 Химическая связь в органических соединениях
- •Валентные состояния атома углерода
- •Концепция электронных смещений
- •Получение цис - и транс - бутен-2-овой кислот
- •2. Химические свойства органических соединений
- •2.1 Кислотные и основные свойства органических соединений
- •Зависимость кислотности от гетероатома.
- •Влияние углеводородного радикала и присутствующих в нем заместителей
- •Влияние растворителя.
- •Основные свойства органических соединений. Π-основания и n-основания.
- •Теория Льюиса.
- •2.2 Радикальные и электрофильные реакции углеводородов и их производные
- •Механизм радикального замещения в общем виде
- •2.3 Нуклеофильные реакции
- •Определение степени окисления атомов в органических веществах
- •Окисление и восстановление органических веществ
- •3. Биологически важные органические соединения
- •3.1 Полифункциональные соединения в процессах жизенедеятельности
- •3.1.1 Общая характеристика.
- •3.1.2. Реакционная способность и специфические реакции многоатомных спиртов и фенолов
- •3.1.3 Реакционная способность и специфические реакции дикарбоновых кислот
- •3.1.5. Функциональные производные угольной кислоты
- •3.2.1 Общая характеристика
- •3.3. Реакционная способность и специфические свойства биологически важных гетерофункциональных соединений
- •3.3.1. Аминоспирты
- •3.3.2. Гидроксикарбонильные соединения
- •3.3.3. Гидрокси- и аминокислоты
- •3.3.4. Оксокислоты
- •3.4. Гетерофункциональные производные бензола как лекарственные средства
- •3.4 Важнейшие гетероциклические биоорганические соединения.
- •3.4.1. Общая характеристика
- •3.4.2. Номенклатура
- •3.4.3. Реакционная способность ароматических гетероциклов
- •3.4.4. Кислотно-основные и нуклеофильные свойства
- •3.4.5 Особенности реакций электрофильного замещения
- •3.4.6. Пятичленные гетероциклы
- •3.4.7 Шестичленные гетероциклы
- •3.4.8. Гетероциклы с двумя гетероатомами
- •3.4.9 Конденсированные гетероциклы
- •4. Биополимеры и их структурные компоненты
- •4.1 Углеводы. Поли-, олиго- и моносахариды.
- •4.1.1. Моносахариды
- •Цикло-оксо-таутомерия
- •Конформации
- •Неклассические моносахариды
- •Химические свойства
- •4.1.2. Олигосахариды
- •4.1.3 Полисахариды
- •4.1.3. Гетерополисахариды
- •4.2 Простые и сложные липиды.
- •4.2.1 Структурные компоненты липидов
- •10.3. Простые липиды
- •10.3.1. Воски
- •10.3.2. Жиры и масла
- •10.3.3. Церамиды
- •10.4. Сложные липиды
- •10.4.1. Фосфолипиды
- •10.4.2. Сфинголипиды
- •10.4.3. Гликолипиды
- •10.5. Свойства липидов
- •10.5.1. Гидролиз
- •10.5.2. Реакции присоединения
- •10.5.3. Реакции окисления
- •Глава 12. Α-аминокислоты, пептиды и белки
- •12.1.1. Классификация
- •12.1.2. Стереоизомерия
- •12.1.3. Кислотно-основные свойства
- •12.1.5. Биологически важные химические реакции
- •12.2. Первичная структура пептидов и белков
- •12.2.1. Строение пептидной группы
- •12.2.2. Состав и аминокислотная последовательность
- •12.2.3. Строение и номенклатура пептидов
- •12.3. Вторичная структура полипептидов и белков
- •Глава 14. Нуклеиновые кислоты. Нуклеотидные коферменты
- •14.1. Нуклеотиды
- •14.1.1. Нуклеозиды
- •14.1.2. Нуклеотиды
- •14.2. Структура нуклеиновых кислот
- •14.2.1. Первичная структура
- •14.2.2. Вторичная структура днк
- •14.3. Нуклеотидные коферменты
- •14.3.1. Нуклеозидполифосфаты
- •14.3.2. Никотинамиднуклеотиды
- •Ферментативный гидролиз крахмала
- •Обнаружение крахмала в продуктах питания
- •Практическое задание
- •Выделение нуклеопротеинов из дрожжей
- •Гидролиз нуклеопротеинов При выполнении данной работы следует соблюдать особую осторожность!
- •Часть 1. Выделение клеточных ядер методом дифференциального центрифугирования
- •Часть2. Экстракция фпФазы из клеточных ядер
- •5. Физико-химические методы анализа в биоорганической химии
- •5.1 Хроматографические методы анализа
- •5.2 Спектральные методы анализа
- •5.3 Электрохимические методы анализа
10.3. Простые липиды
10.3.1. Воски
Воски - сложные эфиры высших жирных кислот и высших одноатомных спиртов.
Воски образуют защитную смазку на коже человека и животных и предохраняют растения от высыхания. Они применяются в фармацевтической и парфюмерной промышленности при изготовлении кремов и мазей. Примером служит цетиловый эфир пальмитиновой кислоты (цетин) - главный компонент спермацета. Спермацет выделяется из жира, содержащегося в полостях черепной коробки кашалотов. Другим примером является мелиссиловый эфир пальмитиновой кислоты - компонент пчелиного воска.
|
10.3.2. Жиры и масла
Жиры и масла - самая распространенная группа липидов. Большинство из них принадлежит к триацилглицеринам - полным эфирам глицерина и ВЖК, хотя также встречаются и принимают участие в обмене веществ моно- и диацилглицерины.
Жиры и масла (триацилглицерины) - сложные эфиры глицерина и высших жирных кислот.
В организме человека триацилглицерины играют роль структурного компонента клеток или запасного вещества («жировое депо»). Их энергетическая ценность примерно вдвое больше, чем белков
или углеводов. Однако повышенный уровень триацилглицеринов в крови является одним из дополнительных факторов риска развития ишемической болезни сердца.
Твердые триацилглицерины называют жирами, жидкие - маслами. Простые триацилглицерины содержат остатки одинаковых кислот, смешанные - различных.
В составе триацилглицеринов животного происхождения обычно преобладают остатки насыщенных кислот. Такие триацилглицерины, как правило, твердые вещества. Напротив, растительные масла содержат в основном остатки ненасыщенных кислот и имеют жидкую консистенцию.
Ниже приведены примеры нейтральных триацилглицеринов и указаны их систематические и (в скобках) обычно употребляемые тривиальные названия, основанные на названиях входящих в их состав жирных кислот.
10.3.3. Церамиды
Церамиды - это N-ацилированные производные спирта сфингозина.
Церамиды в незначительных количествах присутствуют в тканях растений и животных. Гораздо чаще они входят в состав сложных липидов - сфингомиелинов, цереброзидов, ганглиозидов и др.
(см. 10.4).
10.4. Сложные липиды
Некоторые сложные липиды трудно классифицировать однозначно, так как они содержат группировки, позволяющие отнести их одновременно к различным группам. Согласно общей классификации липидов (см. схему 10.1) сложные липиды обычно делят на три большие группы: фосфолипиды, сфинголипиды и гликолипиды.
|
10.4.1. Фосфолипиды
В группу фосфолипидов входят вещества, отщепляющие при гидролизе фосфорную кислоту, например глицерофосфолипиды и некоторые сфинголипиды (схема 10.2). В целом фосфолипидам свойственно достаточно высокое содержание ненасыщенных кислот.
Схема 10.2. Классификация фосфолипидов
Глицерофосфолипиды. Эти соединения являются главными липидными компонентами клеточных мембран.
По химическому строению глицерофосфолипиды представляют собой производные l-глицеро-З-фосфата.
l-Глицеро-З-фосфат содержит асимметрический атом углерода и, следовательно, может существовать в виде двух стереоизомеров.
Природные глицерофосфолипиды имеют одинаковую конфигурацию, являясь производными l-глицеро-З-фосфата, образующегося в процессе метаболизма из фосфата дигидроксиацетона.
Фосфатиды. Среди глицерофосфолипидов наиболее распространены фосфатиды - сложноэфирные производные l-фосфатидовых кислот.
Фосфатидовые кислоты - это производные l-глицеро-З-фосфата, этерифицированные жирными кислотами по спиртовым гидроксильным группам.
Как правило, в природных фосфатидах в положении 1 глицериновой цепи находится остаток насыщенной, в положении 2 - ненасыщенной кислоты, а один из гидроксилов фосфорной кислоты этерифицирован многоатомным спиртом или аминоспиртом (X - остаток этого спирта). В организме (рН ~7,4) оставшийся свободным гидроксил фосфорной кислоты и другие ионогенные группировки в фосфатидах ионизированы.
Примерами фосфатидов могут служить соединения, в составе которых фосфатидовые кислоты этерифицированы по фосфатному гидроксилу соответствующими спиртами:
• фосфатидилсерины, этерифицирующий агент - серин;
• фосфатидилэтаноламины, этерифицирующий агент - 2-ами- ноэтанол (в биохимической литературе часто, но не вполне правильно называемый этаноламином);
|
• фосфатидилхолины, этерифицирующий агент - холин.
Эти этерифицирующие агенты взаимосвязаны между собой, поскольку фрагменты этаноламина и холина могут образовываться в ходе метаболизма из фрагмента серина путем декарбоксилирования и последующего метилирования при помощи S-аденозилметионина (SAM) (см. 9.2.1).
Ряд фосфатидов вместо аминосодержащего этерифицирующего агента содержит остатки многоатомных спиртов - глицерина, миоинозита и др. Приведенные ниже в качестве примера фосфатидилглицерины и фосфатидилинозиты относятся к кислым глицерофосфолипидам, поскольку в их структурах отсутствуют фрагменты аминоспиртов, придающие фосфатидилэтаноламинам и родственным соединениям нейтральный характер.
Плазмалогены. Менее распространены по сравнению со сложноэфирными глицерофосфолипидами липиды с простой эфирной связью, в частности плазмалогены. Они содержат остаток ненасыщенного
* Для удобства способ написания конфигурационной формулы остатка миоинозита в фосфатидилинозитах изменен по сравнению с приведенным выше (см. 7.2.2).
спирта, связанный простой эфирной связью с атомом С-1 глицеро- 3-фосфата, как, например, плазмалогены с фрагментом этаноламина - L-фосфатидальэтаноламины. Плазмалогены составляют до 10% всех липидов ЦНС.
