- •Правила работы с оборудованием: Центрифуги
- •1. Общая характеристика органических соединений.
- •1.1 Основные понятия и классификация органических соединений
- •1.3 Химическая связь в органических соединениях
- •Валентные состояния атома углерода
- •Концепция электронных смещений
- •Получение цис - и транс - бутен-2-овой кислот
- •2. Химические свойства органических соединений
- •2.1 Кислотные и основные свойства органических соединений
- •Зависимость кислотности от гетероатома.
- •Влияние углеводородного радикала и присутствующих в нем заместителей
- •Влияние растворителя.
- •Основные свойства органических соединений. Π-основания и n-основания.
- •Теория Льюиса.
- •2.2 Радикальные и электрофильные реакции углеводородов и их производные
- •Механизм радикального замещения в общем виде
- •2.3 Нуклеофильные реакции
- •Определение степени окисления атомов в органических веществах
- •Окисление и восстановление органических веществ
- •3. Биологически важные органические соединения
- •3.1 Полифункциональные соединения в процессах жизенедеятельности
- •3.1.1 Общая характеристика.
- •3.1.2. Реакционная способность и специфические реакции многоатомных спиртов и фенолов
- •3.1.3 Реакционная способность и специфические реакции дикарбоновых кислот
- •3.1.5. Функциональные производные угольной кислоты
- •3.2.1 Общая характеристика
- •3.3. Реакционная способность и специфические свойства биологически важных гетерофункциональных соединений
- •3.3.1. Аминоспирты
- •3.3.2. Гидроксикарбонильные соединения
- •3.3.3. Гидрокси- и аминокислоты
- •3.3.4. Оксокислоты
- •3.4. Гетерофункциональные производные бензола как лекарственные средства
- •3.4 Важнейшие гетероциклические биоорганические соединения.
- •3.4.1. Общая характеристика
- •3.4.2. Номенклатура
- •3.4.3. Реакционная способность ароматических гетероциклов
- •3.4.4. Кислотно-основные и нуклеофильные свойства
- •3.4.5 Особенности реакций электрофильного замещения
- •3.4.6. Пятичленные гетероциклы
- •3.4.7 Шестичленные гетероциклы
- •3.4.8. Гетероциклы с двумя гетероатомами
- •3.4.9 Конденсированные гетероциклы
- •4. Биополимеры и их структурные компоненты
- •4.1 Углеводы. Поли-, олиго- и моносахариды.
- •4.1.1. Моносахариды
- •Цикло-оксо-таутомерия
- •Конформации
- •Неклассические моносахариды
- •Химические свойства
- •4.1.2. Олигосахариды
- •4.1.3 Полисахариды
- •4.1.3. Гетерополисахариды
- •4.2 Простые и сложные липиды.
- •4.2.1 Структурные компоненты липидов
- •10.3. Простые липиды
- •10.3.1. Воски
- •10.3.2. Жиры и масла
- •10.3.3. Церамиды
- •10.4. Сложные липиды
- •10.4.1. Фосфолипиды
- •10.4.2. Сфинголипиды
- •10.4.3. Гликолипиды
- •10.5. Свойства липидов
- •10.5.1. Гидролиз
- •10.5.2. Реакции присоединения
- •10.5.3. Реакции окисления
- •Глава 12. Α-аминокислоты, пептиды и белки
- •12.1.1. Классификация
- •12.1.2. Стереоизомерия
- •12.1.3. Кислотно-основные свойства
- •12.1.5. Биологически важные химические реакции
- •12.2. Первичная структура пептидов и белков
- •12.2.1. Строение пептидной группы
- •12.2.2. Состав и аминокислотная последовательность
- •12.2.3. Строение и номенклатура пептидов
- •12.3. Вторичная структура полипептидов и белков
- •Глава 14. Нуклеиновые кислоты. Нуклеотидные коферменты
- •14.1. Нуклеотиды
- •14.1.1. Нуклеозиды
- •14.1.2. Нуклеотиды
- •14.2. Структура нуклеиновых кислот
- •14.2.1. Первичная структура
- •14.2.2. Вторичная структура днк
- •14.3. Нуклеотидные коферменты
- •14.3.1. Нуклеозидполифосфаты
- •14.3.2. Никотинамиднуклеотиды
- •Ферментативный гидролиз крахмала
- •Обнаружение крахмала в продуктах питания
- •Практическое задание
- •Выделение нуклеопротеинов из дрожжей
- •Гидролиз нуклеопротеинов При выполнении данной работы следует соблюдать особую осторожность!
- •Часть 1. Выделение клеточных ядер методом дифференциального центрифугирования
- •Часть2. Экстракция фпФазы из клеточных ядер
- •5. Физико-химические методы анализа в биоорганической химии
- •5.1 Хроматографические методы анализа
- •5.2 Спектральные методы анализа
- •5.3 Электрохимические методы анализа
3.4.9 Конденсированные гетероциклы
Из систем с двумя конденсированными гетероциклами важное значение имеют соединения пуринового ряда, в частности гидроксипурины и аминопурины, принимающие активное участие в процессах жизнедеятельности.
Гидроксипурины
Гипоксантин (6-гидроксипурин), ксантин (2,6-дигидроксипурин) и мочевая кислота (2,6,8-тригидроксипурин) образуются в организме при метаболизме нуклеиновых кислот. Ниже они изображены в лактамной форме, в которой находятся в кристаллическом состоянии.
У гидроксипуринов возможна как лактим-лактамная таутомерия, так и таутомерия азолов, связанная с миграцией атома водорода от атома N-7 к N-9, как показано на примере гипоксантина.
Мочевая кислота - конечный продукт метаболизма пуриновых соединений в организме. Она выделяется с мочой в количестве 0,5-1 г/сут. Мочевая кислота двухосновна, плохо растворима в воде, но легко растворяется в щелочах, образуя соли с одним или двумя эквивалентами щелочи (приведено вероятное строение солей).
Соли мочевой кислоты называют уратами. При некоторых нарушениях в организме они откладываются в суставах, например при подагре, а также в виде почечных камней.
Ксантин и гипоксантин по химическому поведению во многом аналогичны мочевой кислоте. Они амфотерны и образуют соли с кислотами и щелочами.
Метилированные в различной степени по атомам азота производные ксантина обычно относят к алкалоидам. Это кофеин (1,3,7-триметилксантин), теофиллин (1,3-диметилксантин) и теобромин (3,7-диметилксантин). Их природными источниками служат листья чая, зерна кофе, бобы какао.
|
Кофеин - эффективный возбудитель ЦНС, он стимулирует работу сердца. Общестимулирующее действие теофиллина и теобромина выражено меньше, но они обладают довольно сильными мочегонными свойствами.
Аминопурины
Из аминопуринов наиболее важны аденин (6-аминопурин) и гуанин (2-амино-6-гидроксипурин), являющиеся структурными фрагментами нуклеиновых кислот. Аденин также входит в состав некоторых коферментов. Преобладающей таутомерной формой гуанина является лактамная. Для обоих соединений возможна и таутомерия азолов в результате миграции атома водорода между атомами N-7 и N-9.
При действии на аденин азотистой кислоты HNO2 происходит его дезаминирование с образованием гипоксантина. Аналогичная реакция в случае гуанина приводит к ксантину.
Алкалоиды
Алкалоидами называют основные азотсодержащие вещества природного (главным образом растительного) происхождения.
Благодаря высокой фармакологической активности алкалоиды известны с давних времен и используются в медицине. Хрестоматийным примером служит применение с середины XVII в. хинина, выделяемого из коры хинного дерева, для лечения малярии.
Почти все алкалоиды имеют в структуре атом азота. Это обусловливает основные свойства алкалоидов, что нашло отражение в их групповом названии (от араб. al-qali - щелочь). В растениях алкалоиды содержатся в виде солей органических кислот - лимонной, яблочной, щавелевой и др.
Важнейшим структурным фрагментом большинства алкалоидов служит какой-либо азотсодержащий гетероцикл. Этот признак положен в основу химической классификации алкалоидов, по которой они подразделяются на группы в соответствии с типом гетероцикла в их структуре, например пиридина, хинолина и т. д. Такие алкалоиды имеют единство в биогенетическом происхождении от аминокислот, их называют истинными алкалоидами.
Наряду с этим существуют алкалоиды, у которых атом азота не включен в гетероциклическую структуру. Эти алкалоиды представляют собой растительные амины, их относят к протоалкалоидам.
При большом разнообразии структур алкалоидов в качестве общего химического свойства можно выделить реакции солеобразования. Эти реакции используют в двух направлениях:
• для получения хорошо растворимых в воде солей, например, с минеральными кислотами (хлориды, ацетаты);
• для получения окрашенных солей с ограниченной растворимостью (с органическими и неорганическими кислотами).
Первое направление используется главным образом для извлечения алкалоидов из природных источников, второе - в аналитических целях для качественного обнаружения алкалоидов.
Алкалоиды группы пирролидина, пиридина и пиперидина
Никотин - весьма токсичный алкалоид, содержание которого в листьях табака доходит до 8%. Включает связанные простой связью ядра пиридина и пирролидина. Воздействует на вегетативную нервную систему, сужает кровеносные сосуды.
Никотиновая кислота (одна из форм витамина РР) является одним из продуктов окисления никотина и используется для синтеза других препаратов.
Лобелин и родственные ему алкалоиды обнаружены в североамериканском растении лобелия. Они близки по структуре и используются в медицине в качестве эффективных рефлекторных стимуляторов дыхания.
Алкалоиды группы тропана
Базовая структура алкалоидов этой группы – тропан - является бициклическим соединением, в состав которого входят пирролидиновое и пиперидиновое кольца.
К тропановым алкалоидам относятся атропин и кокаин, применяемые в медицине как холиноблокаторы.
Атропин содержится в растениях семейства пасленовых: красавке, белене, дурмане. Несмотря на высокую токсичность, он широко применяется в глазной практике, благодаря способности расширять зрачок.
Кокаин - основной алкалоид южноамериканского кустарника Erythroxylon coca Lam. Это одно из первых используемых в медицине анестезирующих и наркотических средств. Синтетические аналоги кокаина, лишенные наркотических свойств, являются производными n-аминобензойной кислоты.
Алкалоиды группы хинолина и изохинолина
Наибольшую известность из хинолиновых алкалоидов получил хинин, выделенный из коры хинного дерева. В состав хинина входят две гетероциклические системы – хинолиновая и хинуклидиновая.
Хинин используется в медицине более 300 лет в качестве противомалярийного средства. В настоящее время из-за ряда негативных побочных эффектов его использование сократилось и на смену ему пришли новые синтетические противомалярийные препараты.
Ядро изохинолина содержится в алкалоидах опия, представляющего собой высохший млечный сок незрелых коробочек мака опийного. Основной из них – морфин – обладает сильным обезболивающим свойством, но при длительном употреблении вызывает привыкание. Морфин был первым алкалоидом, выделенным в чистом виде (1806) и был назван по имени бога сна и сновидений Морфея.
Монометиловый эфир морфина – кодеин – оказывает противокашлевое действие, а диацетильное производное – героин – наркотик.
Другим алкалоидом группы изохинолина, также выделенным изопия, служит папаверин, применяемый в качестве эффективного спазмолитического средства. Синтетический аналог папаверина ношпа имеет с ним явное структурное сходство.
Протоалкалоиды
В эту группу алкалоидов входят растительные основания, не имеющие в своей структуре какого-либо гетероцикла. Важнейшим их представителем является эфедрин, выделяемый из различных видов эфедры.
В молекуле эфедрина содержатся два хиральных центра, в соответствии с этим эфедрин существует в виде четырех стереоизомеров и двух рацематов. Наибольшей фармакологической активностью обладает природный эфедрин, являющийся одним из стереизомеров.
По химической структуре эфедрин подобен катехоламинам.
ЛАБОРАТОРНАЯ РАБОТА №11. ПОЛИ - И ГЕТЕРОФУНКЦИОНАЛЬНЫЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ.
Опыт №1 Доказательство наличия двух карбоксильных групп в винной кислоте
В пробирку поместите 1 каплю 15% раствора винной кислоты, 2 капли 5% раствора гидроксида калия и встряхните. Постепенно начинает выделяется белый кристаллический осадок малорастворимой соли винной кислоты. Если осадок не выпадает, охладите пробирку под струей воды и потрите внутреннюю стенку стеклянной палочкой . Добавьте в пробирку еще 4-5 капель раствора гидроксида калия. Кристаллический осадок постепенно растворяется, так как образуется хорошо растворимая в воде средняя калиевая соль винной кислоты. Раствор тартрата калия сохраните до следующего опыта.
В выводе отметьте:
-о чем свидетельствует образование двух солей винной кислоты?
- напишите уравнение реакции образования гидротартрата и тартрата калия.
Опыт №2 Доказательство наличия гидроксильных групп в винной кислоте.
Эта реакция используется для приготовления реактива Фелинга, который применяется для обнаружения глюкозы в моче.
Ход работы: В пробирку поместите по 2 капли 2% - раствора сульфата меди (II) и 10% раствор гидроксида натрия. Выпадает голубой осадок гидроксида меди (II). К выпавшему осадку добавьте раствор тартрата калия, полученный в опыте №1. Осадок гидроксида меди (II) растворяется с образованием темно-синего раствора.
В выводе отметьте:
-объясните, почему не изменяется цвет раствора в 1-й и изменяется во 2-й пробирке.
-напишите уравнение реакции гидроксида меди(II) с тартратом калия.
Опыт № 3 Разложение лимонной кислоты.
Ход работы: Приготовьте 3 пробирки.
№ пробирки |
Компоненты |
Количество |
1 |
Лимонная кислота Серная кислота (конц.) |
2-3 капли 10 капель |
2 |
Насыщенный раствор гидроксида бария |
5 капель |
3 |
Раствор йода в йодиде калия 10% - раствор гидроксида натрия |
2 капли несколько капель до обесцвечивания |
Закройте 1-ю пробирку пробкой с газоотводной трубкой и осторожно нагрейте на слабом пламени горелки. Смесь начинает пениться. Поднесите конец газоотводной трубки к пламени горелки, выделяющийся газ горит голубым пламенем. Не прекращая нагревание, опустите конец газоотводной трубки сначала во 2-ю пробирку. После того как раствор помутнеет, перенесите газоотводную трубку в 3-ю пробирку до появления бледно-желтого осадка.
В выводе отметьте:
- какие продукты разложения лимонной кислоты обнаруживаются в 1-й пробирке и во 2-й пробирке?
ЛАБОРАТОРНАЯ РАБОТА № 12. БИОЛОГИЧЕСКИ АКТИВНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ.
Опыт № 1. Реакции антипирина и амидопирина с хлоридом железа (III)
В пробирку поместите несколько кристаллов антипирина, прибавьте 2 капли воды и каплю 1% раствора хлорида железа (III). Появляется интенсивное и стойкое оранжево-красное окрашивание, не исчезающее при стоянии. Для сравнения поместите в другую пробирку несколько кристаллов амидопирин, добавьте 2 капли воды и 1 каплю 1% раствора хлорида железа (III). Окраска вновь появляется, сохраняется несколько дольше, но постепенно бледнеет.
Окрашивание антипирина с хлоридом железа (III) обусловлено образованием комплексного соединения ферропирина, амидопирина- образованием продуктов окисления.
Реакция с хлоридом железа является качественной, позволяющей отличить амидопирин от антипирина.
Опыт № 2. Реакция антипирина и амидопирина с азотистой кислотой.
В пробирку поместите несколько кристаллов антипирина, добавьте 2 капли воды, 1 каплю 10% раствора серной кислоты и 1 каплю 5% раствора нитрита натрия. Появляется изумрудно-зеленое окрашивание, постепенно исчезающее, особенно при избытке нитрита натрия. Для сравнения поместите в другую пробирку несколько кристаллов амидопирина. Добавьте 2 капли воды, 1 каплю 10% раствора серной кислоты и 1 каплю 10% раствора нитрита натрия. Появляется нестойкой фиолетовое окрашивание. Если окрашивание исчезает слишком быстро, добавьте еще немного амидопирина. С амидопирином образуется окрашенные продукты окисления.
Опыт № 3. Растворимость пиридина в воде и его основный характер.
В пробирку поместите 1 каплю пиридина. Обратите внимание на его характерный запах. Добавьте 1 каплю воды, сразу получается прозрачный раствор. Добавьте еще 4 капли воды. Пиридин хорошо растворим в воде и смешивается с ней во всех отношениях.
Пинцетом возьмите узкую полосу красной лакмусовой бумажки и смочите ее раствором пиридина, для чего наклоните пробирку с раствором. Можно заметить, только слабое посинение красной лакмусовой бумажки, точнее переход от красного цвета к фиолетовому, что указывает на слабоосновный характер пиридина.
Опыт № 4. Растворимость мочевой кислоты и ее натриевой соли в воде.
В пробирку поместите небольшое количество мочевой кислоты. Прибавьте по каплям воду, каждый раз встряхивая пробирку. Обратите внимание на плохую растворимость мочевой кислоты в воде.
После добавления 8 капель воды растворение все еще не заметно. Стоит, однако, добавить 1 каплю 10% раствора гидроксида натрия, как мутный раствор моментального просветляется вследствие образования относительно лекарстворастворимойдвухзамещенной соли натрия. Полученный раствор сохранить для следующего опыта.
Опыт № 5.Открытие мочевой кислоты
На предметное стекло с помощью пипетки поместите 1 каплю раствора натриевой соли мочевой кислоты. Добавьте 1 каплю концентрированной азотной кислоты. Как только раствор выпарится и начнется слабое покраснение пятна на месте бывшей капли, прекратите нагревание. Когда стекло остынет, сбоку от пятна поместите 1 каплю 10% раствора аммиака. На месте соприкосновения наблюдается появление полоски пурпурно-фиолетового цвета.
Опыт № 6. Качественные реакции на адреналин
Адреналин – гормон мозгового слоя надпочечников, действующий на ткани мишени, повышая концентрацию циклического АМФ; ускоряет гликогенолиз, активирует липолиз, повышает уровень глюкозы в крови. Адреналин (эпинефрин) участвует в общих системных эффектах возбуждения симпатической нервной системы.
Реактивы: 0,1 %–й раствор адреналина; 3 %–й раствор FeCl3; 10 %–й раствор аммиака; 1 %–й раствор KIO3; 10 %–й раствор уксусной или фосфорной кислот
Оборудование: пробирки, водяная баня.
Ход работы
Задание 1. Реакция с хлоридом железа (III).
К 0,5 см3 раствора адреналина добавьте 2 см3 дистиллированной воды и 1 каплю раствора хлорида железа. Содержимое пробирки окрашивается в изумрудно–зеленый цвет.
Добавьте 1 каплю раствора аммиака. Окраска переходит в вишнево–красную, а затем принимает коричневый оттенок.
Задание 2. Реакция с иодатом калия.
К 0,5 см3 добавьте 1 см3 раствора KIO3, 10 капель 10 %–го раствора уксусной или фосфорной кислот и подогрейте на водяной бане до 60 – 65 оС. Появляется интенсивное красно–фиолетовое окрашивание.
Опишите принцип метода и полученный результат.
ЛАБОРАТОРНАЯ РАБОТА № 13. ВЫДЕЛЕНИЕ ФОЛИЕВОЙ КИСЛОТЫ ИЗ ДРОЖЖЕЙ И ЕЕ ОБНАРУЖЕНИЕ
Принцип метода. Фолиевая кислота хорошо растворима в 0,1 М растворе NaOH. При экстрагировании фолиевой кислоты из дрожжей и ультрафиолетовом облучении наблюдается интенсивно-голубая флюоресценция.
Реактивы, исследуемый материал:
1) едкий натр, 0,1 М и 0,005 М растворы;
2) ледяная уксусная кислота;
3) перманганат калия, 0,4% раствор;
4) перекись водорода, 3% раствор;
5) индикаторная бумага;
6) дрожжи.
Ход работы. В ступку помещают 10г дрожжей, добавляют 10 мл 0,1 М. раствора NaOH, 2 г кварцевого песка и растирают 5 мин. Затем центрифугируют 15 мин при 3000 об/мин.
К 10 каплям надосадочной жидкости приливают 20 капель ледяной уксусной кислоты (рН 3,0) и 10 капель 0,4% раствора перманганата калия так, чтобы розовое окрашивание не исчезало в течение 10 мин. Через 10 мин удаляют избыток перманганата калия добавлением 4-5 капель 3% раствора Н2О2 и приливают 0,005 М. раствор едкого натра (приблизительно 5 мл) до рН 4,0-4,5 в присутствии индикаторной бумаги. При ультрафиолетовом облучении фолиевой кислоты в щелочном растворе в флюороскопе наблюдается голубая флюоресценция.
