- •Нормальное содержание эритроцитов в крови
- •Патология эритроцитов представлена
- •Эритропениями эритроцитозами
- •Анемия – уменьшение количества эритроцитов и (или) гемоглобина в единице объема крови с качественными (морфофункциональными) изменениями самих эритроцитов. Классификация анемий
- •I. По этиологии
- •II. По патогенезу
- •III. По типу кроветворения
- •IV. По способности костного мозга к регенерации (по числу ретикулоцитов)
- •V. По цветовому показателю
- •VI. По размеру эритроцитов
- •VII. По степени тяжести
- •VIII. По течению
- •I. Постгеморрагические анемии (пга)
- •Рефлекторная сосудистая стадия компенсации кровопотери:
- •Гидремическая (гемодилюционная) стадия компенсации кровопотери:
- •II. Гемолитические анемии (га)
- •Талассемия связана с нарушением синтеза одной из цепей Нв. Чаще встречается -талассемия, связанная с нарушением синтеза -цепей НвА.
- •III. Дизэритропоэтические анемии Анемии, развивающиеся вследствие нарушенного кровообразования (кроветворения).
- •При этом количество теряемого железа превышает его поступление с пищей. Патогенез снижение содержания Fe в сыворотке крови, костном мозге и депо
- •Лихорадка Лектор – д.М.Н. Борукаева и.Х.
- •Механизмы развития артериальной гиперемии
- •Нейрогенный механизм
- •1. Нейрогенный механизм
- •Последствия и исходы ишемии зависят от следующих факторов:
- •Нарушение микроциркуляции
- •Причинные факторы, вызывающие наследственные болезни, называют мутагенами, т.К. Они реализуют свое действие посредством мутаций.
- •Физические химические биологические
- •Пестициды,
- •Патогенез наследственных болезней
- •1. Мутации
- •2. Мутации
- •3. Мутации
- •4. Мутации
- •Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждений днк, называемых системами репарации.
- •Аутосомно-рецессивный тип наследования.
- •Наследование, сцепленное с полом.
- •Кодоминантный тип наследования.
- •II. Хромосомные болезни
- •Врожденные заболевания (пороки развития)
- •Клинико-генеалогический метод.
- •Близнецовый метод.
- •Популяционно-статистический метод.
- •Цитогенетический метод.
- •Экспериментальное моделирование.
- •Дерматоглифика.
- •Амниоцентез.
- •Параклинические методы исследования:
- •Занятие № 1 общая патофизиология
- •Связь патофизиологии с другими науками
- •Метод физического и математического моделирования.
- •Теоретическая разработка. Общая нозология
- •П атологические состояния могут быть
- •6) По продолжительности течения:
- •Общая этиология
- •По происхождению:
- •Классификация условий:
- •I. По происхождению:
- •II. По влиянию на организм:
- •Благоприятные: неблагоприятные:
- •Инфекционный фактор
- •Повреждения могут быть
- •Первичные Вторичные
- •В зависимости от степени нарушений внутриклеточного гомеостаза различают:
- •Первичное, прямое Вторичное
- •Нарушение энергетического обеспечения процессов, происходящих в клетке.
- •Повреждение мембранного аппарата.
- •2. Гидролиз фосфолипидов эндогенными фосфолипазами.
- •3. Механическое (осмотическое) повреждение мембраны.
- •С двиг лейкоцитарной формулы
- •Л ейкемоидная реакция
- •Электромагнитное излучение Корпускулярное излучение
- •Мозг – высоко чувствителен во время эмбриогенеза. У взрослых относительно радиоустойчив. Но при высоких дозах развивается гибель клеток, некроз головного и спинного мозга.
- •Патогенез горной болезни
- •Онкотический механизм развития отека.
- •3. Осмотический механизм развития отека.
- •3. Характеристика отдельных видов отеков
- •3.1. Сердечный отек
- •3.2. Нефритический отек
- •3.3. Нефротический отек
- •1. Водный обмен организма и его регуляция
Нарушение микроциркуляции
Внутрисосудистые нарушения - при этом наблюдается увеличение вязкости крови и снижение объемной скорости кровотока и перфузии тканей. Наиболее значительным проявлением внутрисосудистых нарушений является «сладж»- феномен.
«Сладж»- феномен характеризуется адгезией, агрегацией и агглютинацией форменных элементов крови, что обусловливает ее сепарацию на более или менее крупные конгломераты, состоящие из эритроцитов, тромбоцитов и лейкоцитов, и плазму крови.
Причины сладжа:
нарушение центральной и региональной гемодинамики (при сердечной недостаточности, венозном застое, ишемии, АГ);
повышение вязкости крови (при гемоконцентрации, гиперпротеинемии, полицитемии);
повреждении стенок микрососудов.
Действие указанных факторов приводит к:
Агрегации – присоединение, скопление, скучивание клеток крови;
Адгезии – прилипание, слипание друг с другом и клетками эндотелия микрососудов;
Агглютинации – склеивание клеток с последующим лизисом их мембран –цитололизом.
Механизмы сладжа:
Активация клеток с высвобождением из них БАВ, обладающих проагрегантными свойствами – АДФ, тромбоксан А2, кинины, простгаландины, гистамин.
Снятие отрицательного в норме поверхностного заряда клеток и/или их перезарядка его на положительный избытком катионов, выходящих из поврежденных клеток.
Уменьшение поверхностного заряда при контакте с элементами крови молекул белков при гиперпротеинемии.
Сладжирование крови приводит к сужению просвета сосудов и нарушению перфузии (замедление кровотока в них, вплоть до стаза, турбулентный характер тока крови), нарушение транскапиллярного обмена, развитие гипоксии и ацидоза, нарушение метаболизма в тканях.
нарушение проницаемости сосудистой стенки
Причины повышения проницаемости сосудистой стенки:
Увеличение объема транспортируемой жидкости:
увеличение концентрации ионов водорода (развитие ацидоза) в тканях. При этом наступает неферментативный гидролиз компонентов мембраны сосудов, более легкому транспорту плазмы крови через нее;
активация ферментов лизосом и энзимов при ацидозе, что приводит к ферментативному гидролизу компонентов мембраны сосудов;
нарушение целостности стенки сосуда - образование микрощелей при переполнении сосудов микроциркуляторного русла (при венозной гиперемии) или лимфой (при лимфостазе);
при действии медиаторов воспаления (гистамин, лейкотриены, простагландины) развивается сокращение эндотелиоцитов увеличение размеров пор между ними;
при непосредственном повреждении эндотелиоцитов и базальной мембраны при действии вирусов, бактерий, токсинов.
Уменьшение объема транспортируемой жидкости:
снижение проницаемости стенки сосудов при утолщении и/или уплотнении ее (например, при накоплении ионов кальция, разрастании волокнистых соединительной ткани, отеки стенки, гипертрофии и гиперплазии).
внесосудистые нарушения
К этой группе относятся процессы, возникающие:
при первичном повреждении в периваскулярной ткани;
нарушении лимфоотока из ткани.
Первичное повреждение ткани приводит:
к разрушению клеток и выходу из них белков, повышающих онкотическое давление интерстициальной жидкости;
к активации клеток тканей (тучных клеток, макрофагов, лимфоцитов) и выделение ими медиаторов воспаления. Медиаторы воспаления сами повреждают ткани и увеличивают проницаемость стенки сосуда;
Уменьшение лимфоотока может быть :
механическое – при компрессии извне (опухоль, отек), окклюзии изнутри (тромб, эмбол, гельминты), при недостаточности клапанного аппарата лимфососудов;
динамическое – когда лимфососуды не в состоянии вместить увеличенный объем интерстициальной жидкости;
ретенционное – при задержке интерстициальной жидкости белками.
Конечным результатом всех видов локальных нарушений циркуляции является снижение перфузии сосудов терминального русла и увеличение объема интерстициальной жидкости - локальный отек и нарушение функции тканей.
Тема: Патофизиология наследственности.
(преподаватели – к.м.н. Абазова З.Х., д.м.н. Борукаева И.Х.)
Свойство клеток и организмов передавать свои анатомо-физиологические признаки (особенности) потомкам называется наследственностью; процесс передачи этих признаков – наследованием.
Передача осуществляется с помощью генов – материальных единиц наследственности. От родителей потомкам передаются не признаки в готовом виде, а информация (код) о синтезе белка (фермента), детерминирующего этот признак.
Элементарными дискретными единицами наследственности являются гены, представляющие собой отрезки молекулы ДНК. Гены состоят из кодонов. Каждый кодон представляет собой группу из 3 нуклеотидов (нуклеотидный триплет). Каждый кодон кодирует информацию о структуре аминокислоты и местоположении ее в белковой молекуле. Каждый ген определяет последовательность аминокислот в одном из белков, что, в конечном счете, приводит к реализации тех или иных признаков в онтогенезе особи. Гены собираются в блоки, а последние в ДНК-нити, которые образуют хромосому.
Основная догма генетики: ген – белок – фенотипический признак.
Число хромосом и характерные особенности их строения видовой признак (правило постоянства числа хромосом). Так, у человека в ядрах всех клеток находится по 46 хромосом. Число хромосом у всех видов четное, это связано с тем, что хромосомы составляют пары (правило парности хромосом). У человека 23 пары хромосом.
Хромосомы, которые относятся к одной паре, называют гомологичными. Негомологичные хромосомы всегда имеют отличия в строении. Каждая пара хромосом характеризуется своими особенностями (правило индивидуальности хромосом).
В последовательных генерациях клеток сохраняется постоянное число хромосом и их индивидуальность вследствие того, что хромосомы обладают способностью к авторепродукции при делении клеток (правило непрерывности хромосом).
В ядрах клеток тела (т.е. соматических клетках) содержится полный двойной набор хромосом. В нем каждая хромосома имеет партнера. Такой набор называется диплоидным и обозначается 2n. В ядрах половых клеток в отличие от соматических из каждой пары гомологичных хромосом присутствует лишь одна хромосома. Так, в ядрах половых клеток человека присутствует 23 хромосомы. Все они различны, негомологичны. Такой одинарный набор хромосом называется гаплоидным и обозначается n. При оплодотворении происходит слияние половых клеток, каждая из которых вносит в зиготу гаплоидный набор хромосом и восстанавливается диплоидный набор: n +n=2n.
При сравнении хромосомных наборов из соматических клеток мужских и женских особей, принадлежащих одному виду, обнаруживалось отличие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название аутосом.
Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом. Иными словами, кариотип – совокупность особенностей (количественных и качественных) полного хромосомного набора. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и 1 пара – половых хромосом (гетерохромсом).
Гены расположены в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у каждого вида равно гаплоидному числу хромосом. Каждый ген в хромосоме занимает определенное место – локус. Гены в хромомомах расположены линейно. Гены, определяющие развитие альтернативных признаков, принято называть аллельными парами, они расположены в одних и тех же локусах гомологичных хромосом. Если в обеих гомологичных хромосомах находятся одинаковые аллельные (изоаллельные) гены, такой организма называется гомозиготным и дает только один тип гамет. Если же аллельные гены различны, то такой организм носит название гетерозиготного по данному признаку, он образует два типа гамет.
Все болезни в зависимости от того, связаны ли они с изменением наследственной информации или возникают под действием внешних факторов в процессе онтогенеза, можно разделить на 2 варианта – наследственные и приобретенные.
Наследственные болезни – заболевания, обусловленные хромосомными и генными мутациями. Основой выделения наследственных болезней является не факт наследования (хотя это может иметь место), а нарушение в наследственном (генетическом) аппарате половой клетки одного или обоих из родителей.
Приобретенные болезни возникают под действием факторов внешней среды. Если приобретенные болезни по проявлениям сходны с наследственными, их называют фенокопиями данных наследственных болезней.
Фенокопия – наличие у индивида таких фенотипических признаков, которые обычно возникают при наследственных болезнях. В отличие от наследственных болезней характерные изменения фенотипа при фенокопиях приобретаются организмом в процессе онтогенеза в результате воздействия патогенных факторов на эмбрион, плод в критические периоды их развития, а также и в постнатальном периоде, а не являются результатом генных или хромосомных мутаций в родительских гаметах. Например, спонтанно возникают и иногда передаются по наследству генные мутации, приводящие к незаращению верхней челюсти. Развивающаяся в этом случае патология является наследственным заболеванием. Однако, сходное по фенотипическому проявлению состояние может развиваться и при нормальном генотипе – в результате воздействия разнообразных патогенных факторов на эмбрион в период формирования лицевого скелета. Очень часто данная патология является следствием тератогенного эффекта глюкокортикоидных гормонов, применяемых по жизненным показаниям в 1-ой половине беременности.
Генотипом называется совокупность всех генов, следовательно, и генетических признаков. Генотип обладает двумя противоречивыми качествами: стабильностью и изменчивостью
Фенотипом называется совокупность проявившихся признаков организма в результате взаимодействия генотипа с окружающей средой.
Этиология наследственных заболеваний
