- •Введение
- •1. Полупроодниковые приборы
- •1.1. Полупроводниковые диоды
- •1.1.1. Выпрямительные плоскостные диоды
- •1.1.2 Кремниевый стабилитрон
- •1.1.3. Светодиод
- •1 .1.4. Туннельный диод
- •1.1.5. Диоды Шоттки
- •1.1.6. Импульсные диоды
- •1.1.7. Тиристоры
- •1.1.8. Динисторы
- •Контрольные вопросы
- •1.2. Биполярный транзистор
- •1.2.1. Схемы включения транзисторов
- •1.2.2. Статические характеристики транзисторов
- •1.2.3. Динамический режим работы транзисторов
- •1.2.4. Типы и параметры транзисторов
- •Контрольные вопросы
- •1.3. Полевой транзистор
- •1.3. 1 Полевой транзистор с затвором в виде p-n-перехода
- •1.3.2 Полевые транзисторы с изолированным затвором или мдп -транзисторы
- •1.3.3. Сравнение полевых и биполярных транзисторов
- •Контрольные вопросы
- •1.4. Оптоэлектронные приборы
- •1.4.1. Фоторезисторы
- •1.4.2. Фотодиоды (фд)
- •1.4.3 Фототранзисторы
- •1.4.4. Фототиристоры
- •1.4.5. Светоизлучающие диоды (сид)
- •1.4.6. Оптроны
- •Контрольные вопросы
- •2. Физические основы интегральной микроэлектроники
- •Контрольные вопросы
- •3. Маломощные электронные источники питания
- •3.1 Однофазные электронные выпрямители
- •3.1.1 Однополупериодный выпрямитель
- •3.1.2 Двухполупериодные выпрямители с выводом средней точки
- •3.1.3 Мостовой выпрямитель
- •3.2 Сглаживающие фильтры
- •3.2.1 Емкостной фильтр
- •3.2.2 Индуктивный фильтр
- •3.2.4. Внешняя характеристика выпрямителя
- •3.3 Стабилизаторы постоянного напряжения
- •3.3.1 Параметрический стабилизатор напряжения
- •3.3.2 Непрерывный компенсационный стабилизатор напряжения постоянного тока
- •Контрольные вопросы
- •4. Электронные усилители
- •4.1 Основные характеристики усилителей
- •4.2. Усилитель напряжения низкой частоты
- •4.3 Обратные связи в усилителях.
- •4.4. Усилительный каскад с общим коллектором.
- •4.5 Усилитель напряжения на полевом транзисторе
- •4..6 Избирательный усилитель
- •4.7. Усилители мощности звуковой частоты. Классы усиления
- •4.8 Однотактный усилитель мощности
- •4.9. Двухтактный усилитель мощности
- •4.10. Усилители постоянного тока
- •4.11 Операционный усилитель
- •4.12 Операционные схемы
- •Контрольные вопросы
- •5.Генераторные устрйства
- •5.1 Условия самовозбуждения генератора
- •5.4 Стабилизация частоты
- •Контрольные вопросы
- •6. Импульсные устройства
- •6.1 Общие сведения
- •6.2 Транзистор в режиме ключа
- •6.3 Мультивибратор
- •6.4 Компаратор
- •Контрольные вопросы
- •7. Логические и цифровые устройства
- •7.1 Общие сведения
- •7.2 Классификация логических имс по выполняемым функциям
- •7.3 Основные параметры логических имс
- •7.4 Классификация логических имс по типу транзисторов, на основе которых они построены
- •7.5 Интегральные триггеры
- •Информация на выходе триггера меняет свое значение на противоположное при каждом перепаде напряжения на входе. Таблица истинности представлена в табл. 7.3.
- •Контрольные вопросы
- •8. Микроэлектронные цифроые узлы и устройста
- •8.1 Комбинационные устройства. Дешифратор (декодер)
- •8.2 Регистры
- •Временные диаграммы в) регистра сдвига
- •8.3 Счетчики
- •8. 4 Цифро–аналоговые и аналого–цифровые преобразователи
- •8.4.1 Цифро – аналоговые преобразователи
- •8.4.2 Аналого–цифровые преобразователи
- •8.5. Микропроцессоры
- •Сферы применения микропроцессорных систем
- •Контрольные вопросы
- •Заключение
- •Рекомендуемый библиографический список
- •Содержание
1.1.2 Кремниевый стабилитрон
Кремниевый
стабилитрон – это, как правило,
кремниевый диод, работающий в режиме
электрического (туннельного, лавинного)
пробоя p-n-перехода
и служащий для стабилизации напряжения
в цепи постоянного тока. ВАХ кремниевого
стабилитрона имеет вид (рис. 1.3).
Отличительной особенностью этой
характеристики является относительное
постоянство напряжения на диоде после
наступления электрического пробоя при
больших изменениях тока. Напряжение
пробоя
и есть напряжение стабилизации.
Кремниевый стабилитрон включается параллельно нагрузке, на которой поддерживается постоянное напряжение, и через балластное сопротивление к источнику входного напряжения. Схема включения стабилитрона и его условное обозначение в электрических схемах приведены на рис. 1.4.
П
остояннство
напряжения
можно
объяснить следующим образом. Высокая
концентрация примесей по обе стороны
p-n-перехода
приводит к увеличению контактного
напряжения перехода и уменьшению ширины
запирающего слоя. Поэтому уже при
относительно низких
напряженность электрического поля в
запирающем слое оказывается достаточной
для возникновения пробоя. Изменяя
концентрацию примесей можно менять
напряжение пробоя
.
Напряжение
современных
стабилитрона лежит в пределах от 1 до
180 В. Основные параметры кремниевого
стабилитрона: напряжение стабилизации
,
динамическое сопротивление на участке
стабилизации
(качество стабилизации тем выше, чем
меньше
).
Минимальное и максимальное значения
тока стабилизации
,
температурный коэффициент напряжения
,
который показывает
на сколько
изменится напряжение стабилизации при
изменении температуры на 1 0С;
максимально допускаемая рассеиваемая
мощность
.В
табл. 1.2 приведены усредненные параметры
стабилитронов, где P – мощность,
рассеиваемая на стабилитроне.
Таблица 1.2
Тип стабилитрона |
Uст,В |
Iст.ном, мА |
Iст.мин, мА |
Iст.макс, мА |
Р, Вт |
2С482А |
8,2 |
5 |
1 |
96 |
1 |
2С530А |
30 |
5 |
1 |
27 |
1 |
КС620А |
120 |
50 |
5 |
42 |
5 |
Стабисторы
Для стабилизации низких напряжений используется прямая ветвь вольт–амперной характеристики кремниевых диодов, для которых стабильное прямое падение напряжения составляет 0,7 В. Последовательное включение таких диодов позволяет получить напряжение стабилизации 1,4...2,1 В и т.д. В качестве стабисторов используются диоды Д219С, Д220С и т.д.
1.1.3. Светодиод
Светодиод – полупроводниковый диод, в котором электрическая энергия преобразуется в оптическую. Известно, что при пропускании прямого тока через p-n-переход учащаются акты рекомбинации носителей заряда, т.е. возвращение электрона из зоны проводимости в валентную зону. Это сопровождается излучением кванта энергии. При определенном подборе материала, из которого изготавливается диод, излучаемая оптическая энергия может находиться в видимой части спектра. Исходным материалом для изготовления светодиода служат фосфид галлия, арсенид-фосфид галлия, карбид кремния. Большую часть энергии, выделенной в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия. На долю энергии видимого излучения приходится порядка 10-20 %, поэтому кпд светодиода не велик. Светодиоды применяются в качестве световых индикаторов.
Конструкция диода обеспечивает передачу света от p-n-перехода без значительных потерь в теле полупроводника. Светодиод работает при подаче напряжения в прямом направлении. Схема включения, ВАХ и условное обозначение светодиода показаны на рис 1.5.
