- •Введение
- •1. Полупроодниковые приборы
- •1.1. Полупроводниковые диоды
- •1.1.1. Выпрямительные плоскостные диоды
- •1.1.2 Кремниевый стабилитрон
- •1.1.3. Светодиод
- •1 .1.4. Туннельный диод
- •1.1.5. Диоды Шоттки
- •1.1.6. Импульсные диоды
- •1.1.7. Тиристоры
- •1.1.8. Динисторы
- •Контрольные вопросы
- •1.2. Биполярный транзистор
- •1.2.1. Схемы включения транзисторов
- •1.2.2. Статические характеристики транзисторов
- •1.2.3. Динамический режим работы транзисторов
- •1.2.4. Типы и параметры транзисторов
- •Контрольные вопросы
- •1.3. Полевой транзистор
- •1.3. 1 Полевой транзистор с затвором в виде p-n-перехода
- •1.3.2 Полевые транзисторы с изолированным затвором или мдп -транзисторы
- •1.3.3. Сравнение полевых и биполярных транзисторов
- •Контрольные вопросы
- •1.4. Оптоэлектронные приборы
- •1.4.1. Фоторезисторы
- •1.4.2. Фотодиоды (фд)
- •1.4.3 Фототранзисторы
- •1.4.4. Фототиристоры
- •1.4.5. Светоизлучающие диоды (сид)
- •1.4.6. Оптроны
- •Контрольные вопросы
- •2. Физические основы интегральной микроэлектроники
- •Контрольные вопросы
- •3. Маломощные электронные источники питания
- •3.1 Однофазные электронные выпрямители
- •3.1.1 Однополупериодный выпрямитель
- •3.1.2 Двухполупериодные выпрямители с выводом средней точки
- •3.1.3 Мостовой выпрямитель
- •3.2 Сглаживающие фильтры
- •3.2.1 Емкостной фильтр
- •3.2.2 Индуктивный фильтр
- •3.2.4. Внешняя характеристика выпрямителя
- •3.3 Стабилизаторы постоянного напряжения
- •3.3.1 Параметрический стабилизатор напряжения
- •3.3.2 Непрерывный компенсационный стабилизатор напряжения постоянного тока
- •Контрольные вопросы
- •4. Электронные усилители
- •4.1 Основные характеристики усилителей
- •4.2. Усилитель напряжения низкой частоты
- •4.3 Обратные связи в усилителях.
- •4.4. Усилительный каскад с общим коллектором.
- •4.5 Усилитель напряжения на полевом транзисторе
- •4..6 Избирательный усилитель
- •4.7. Усилители мощности звуковой частоты. Классы усиления
- •4.8 Однотактный усилитель мощности
- •4.9. Двухтактный усилитель мощности
- •4.10. Усилители постоянного тока
- •4.11 Операционный усилитель
- •4.12 Операционные схемы
- •Контрольные вопросы
- •5.Генераторные устрйства
- •5.1 Условия самовозбуждения генератора
- •5.4 Стабилизация частоты
- •Контрольные вопросы
- •6. Импульсные устройства
- •6.1 Общие сведения
- •6.2 Транзистор в режиме ключа
- •6.3 Мультивибратор
- •6.4 Компаратор
- •Контрольные вопросы
- •7. Логические и цифровые устройства
- •7.1 Общие сведения
- •7.2 Классификация логических имс по выполняемым функциям
- •7.3 Основные параметры логических имс
- •7.4 Классификация логических имс по типу транзисторов, на основе которых они построены
- •7.5 Интегральные триггеры
- •Информация на выходе триггера меняет свое значение на противоположное при каждом перепаде напряжения на входе. Таблица истинности представлена в табл. 7.3.
- •Контрольные вопросы
- •8. Микроэлектронные цифроые узлы и устройста
- •8.1 Комбинационные устройства. Дешифратор (декодер)
- •8.2 Регистры
- •Временные диаграммы в) регистра сдвига
- •8.3 Счетчики
- •8. 4 Цифро–аналоговые и аналого–цифровые преобразователи
- •8.4.1 Цифро – аналоговые преобразователи
- •8.4.2 Аналого–цифровые преобразователи
- •8.5. Микропроцессоры
- •Сферы применения микропроцессорных систем
- •Контрольные вопросы
- •Заключение
- •Рекомендуемый библиографический список
- •Содержание
3.3.2 Непрерывный компенсационный стабилизатор напряжения постоянного тока
Компенсационный стабилизатор представляет собой простейшую автоматическую систему регулирования, работающую на принципе отрицательной обратной связи (ООС). Для реализации такого принципа устройство, кроме регулирующего (исполнительного) элемента (РЭ) должно содержать измерительный элемент (ИЭ), включающий в себя резистивный делитель. элемент сравнения, источник эталонного напряжения Uэт , и усилитель постоянного тока УПТ (см. рис.3.13).
Рис.3.13. Структурная схема компенсационного стабилизатора.
Напряжение с выхода резистивного делителя, пропорциональное стабилизируемому параметру, сравнивается с эталонным напряжением и полученный сигнал ошибки Uош = Uэт –к1Uвых после усиления – управляет коэффициентом передачи регулирующего элемента. Увеличение Uош, вызванное уменьшением выходного параметра, приведёт к увеличению коэффициента передачи РЭ. Это вызовет восстановление исходного значения выходного напряжения Uвых. И наоборот, увеличение Uвых, уменьшая сигнал ошибки, уменьшает коэффициент передачи РЭ.
В зависимости от вида выполнения РЭ различают непрерывные и ключевые компенсационные стабилизаторы напряжения. В непрерывных компенсационных стабилизаторах в качестве РЭ используют биполярный или полевой транзистор, работающий в активном режиме (режим генератора тока). В ключевых стабилизаторах роль РЭ выполняют импульсные усилители мощности. Компенсационные стабилизаторы выполняются на полупроводниковых дискретных элементах и в интегральном исполнении.
Рассмотрим подробнее компенсационный стабилизатор на дискретных элементах, электрическая принципиальная схема которого приведена на рис.3.14.
Назначение элементов стабилизатора.
VT1 – мощный низкочастотный транзистор n-p-n типа, играющий роль регулируемого сопротивления (регулирующий элемент), выбирается по току нагрузки, падению напряжения Uкб;
VT2 – транзистор n-p-n типа, выполняющий задачу усиления сигнала рассогласования (ошибки) и управляющий режимом работы транзистора VT1; На вход VT2 подается сигнал ошибки, поступающий с измерительного элемента (ИЭ).
ИЭ включает в себя делитель R4, R5, R6 и источник опорного напряжения, функции которого выполняет стабилитрон VD7
VD6 – стабилитрон (Uстаб около 12,6 В);
VD7 – стабилитрон (Uстаб около 6,8 В) – задает уровень опорного напряжения ;
Коэффициент передачи делителя можно изменять потенциометром R5, тем самым задавая уровень выходного стабилизированного напряжения в пределах 7,5…10,5 В;
R1 – резистор, ограничивающий ток через VD6;
R2 – резистор, ограничивающий ток базы транзистора VT1 и ток коллектора транзистора VT2.
Элементы R1, VD6, R2 являются сглаживающим фильтром, понижающим коэффициент пульсаций подводимого к стабилизатору напряжения Uвх;
Резистор R3 ограничивает ток опорного стабилитрона.
Рассмотрим работу устройства.
Выходное напряжение стабилизатора равно разности его входного напряжения и падения напряжения между выводами коллектора и эмиттера регулирующего транзистора VT1:
Uвых = Uвх – Uкэ VT1.
В свою очередь, для UКЭ справедливо выражение
Uкэ VT1 = Uкб + Uбэ Uкб VT1 + const.
Напряжение Uкб VT1 определяется падением напряжения на резисторах R1 и R2
Uкэ VT1 = I1R1+ I2R2 = Uвх - Uвых упт.
Выходное напряжение усилителя постоянного тока Uвых упт равно:
Uвых упт = k (Uб VT1 – Uэ VT2),
где k – коэффициент усиления напряжения УПТ;
(Uб VT1 – Uэ VT2) – напряжение между базой и эмиттером транзистора VT2 УПТ.
Возникновение любых отклонений выходного напряжения стабилизатора от установленного значения приводит к изменению тока базы транзистора VT2, и соответственно тока его коллектора. В результате этого изменяется сопротивление коллекторного перехода регулирующего транзистора VT1 так, что возникшее отклонение компенсируется.
Допустим,
выходное напряжение Uвых
стабилизатора за счет увеличения
входного напряжения Uвх,
либо изменения нагрузки увеличилось.
Тогда напряжение, снимаемое с делителя
R4,
R5,
R6
(
)
тоже возрастает. Так как опорное
напряжение
,
снимаемое с VD7
постоянно, сигнал ошибки Uош
= Uэт
– к1Uвых
уменьшается, что приводит к уменьшению
выходного напряжения УПТ (VT2)
и к соответствующему уменьшению падения
напряжения на резисторах R1
и R2.
Напряжение Uкб
транзистора
VT1 уменьшается, VT1 подзапирается, его сопротивление увеличивается. Возникшее увеличение Uвых компенсируется повышением падения напряжения на VT1.
В результате этого выходное напряжение стабилизатора возвращается к исходному значению.
Чем выше коэффициент усиления по напряжению УПТ, тем точнее поддерживается уровень выходного напряжения и повышается скорость его восстановления. Если коэффициент усиления УПТ стремится к бесконечности, то выходное напряжение стабилизатора полностью определится коэффициентом передачи делителя напряжения на резисторах R4, R5, R6 и значением опорного (эталонного) напряжения Uоп. При перемещении движка потенциометра R5 в нижнее по схеме положение разница между опорным напряжением и напряжением, снимаемым с делителя, становится большим, базовый и коллекторный токи VT2 увеличиваются, падение напряжений на R1 и R2 увеличиваются. В результате падение напряжения на VT1 снижается, а выходное напряжение возрастает до нового заданного уровня. Так плавно можно изменять величину стабилизируемого напряжения Uвых..
Рис.3.14 Принципиальная схема компенсационного стабилизатора.
