Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция № 6 (алгоритмы и методы).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
482.3 Кб
Скачать

Лекція № 6

6. Апроксимація функцій багаточленами

6.1. Загальний алгоритм

З попередньої лекції нам відомо, якщо набір експериментальних даних отриманий з суттєвою похибкою, то не має сенсу застосовувати інтерполяцію, зокрема методом Лагранжа чи сплайнами, для обробки результатів. У цьому випадку доцільно провести апроксимаційну криву, яка не проходить через експериментальні точки, але в той же час відображає досліджувану залежність, згладжує можливі викиди, які обумовлені наявністю похибок в експерименті.

Позначимо вузли таблиці експериментальних даних через хі, де

номер вузла. Вважаємо відомими значення експериментальних даних у вузлових точках Вводимо неперервну функцію для апроксимації дискретної залежності У вузлах функції і будуть відрізнятися на величину Для того, щоб не враховувати знаки підносимо його значення в квадрат і знаходимо суму по всіх вузлах:.

(6.1)

Нагадаємо, що метод побудови апроксимуючої залежності функції за умови мінімуму величини Q називається методом найменших квадратів (МНК).

Найбільш поширеним є вибір функції у вигляді наступної лінійної комбінації:

(6.2)

де – базисні функції;

с0, с1, … , сmдеякі постійні.

М атематично умови суми квадратів відхилень Q можна знайти, прирівнявши нулю частинні похідні від Q по коефіцієнтах

Із системи цих лінійних алгебраїчних рівнянь визначаються всі коефіцієнти Ця система називається системою нормальних рівнянь. Її матриця має вигляд:

і називається матрицею Грама. Елементи матриці Грама є скалярними добутками базисних функцій

Розширена матриця системи лінійних алгебраїчних рівнянь виходить додавання справа до матриці Грама стовбцю вільних членів

,

де скалярні добутки, які є елементами стовбцю, визначаються за формулою

Матриця Грама має наступні властивості, корисні при програмній реалізації алгоритмів МНК:

1) матриця симетрична, тобто , що дозволяє зменшити обсяг обчислень при заповненні матриці;

2) матриця є позитивно визначеною, тому при розв’язанні системи нормальних рівнянь методом виключення Гауса можна відмовитися від процедури вибору головного елемента;

3) визначник матриці буде відрізнятися від нуля, якщо за базис функції будуть вибрані лінійно незалежні функції при цьому система лінійних алгебраїчних рівнянь має єдине рішення.

При обробці експериментальних даних, визначених з похибкою ε в кожній вузловій точці, зазвичай починають з апроксимації функцією , поданою однією-двома базисними функціями. Після визначення коефіцієнтів розраховують величину Q. Якщо , то необхідно розширити базис додаванням нових функцій . Розширення базису продовжують до тих пір, поки не буде виконана умова .

Вибір конкретних базисних функцій залежить від властивостей функції , таких як періодичність, характер експоненціальний або логарифмічний, симетричність, наявність асимптоти тощо.

6.2. Степеневий базис

Візьмемо базисні функції у вигляді послідовності степеню аргументу х, які лінійно незалежні:

У цьому випадку, як і при інтерполяції, будемо апроксимувати експериментальну залежність поліномом. Але степінь поліному m зазвичай вибирають так, щоб (при лагранжевій інтерполяції ).

Апроксимуюча крива в МНК не проходить через вузлові точки, але вона будується за умови найменшого сумарного квадратного відхилення. Експериментальні дані "згладжуються" за допомогою функції . Якщо обрати , то на підставі єдності інтерполяційного поліному отримаємо функцію , яка збігається з інтерполяційним поліномом степеня , апроксимована крива пройде через усі експериментальні точки і величина Q буде дорівнювати нулю. Ця обставина застосовується при налагодженні і тестуванні програм, що реалізують МНК

З апишемо розширену матрицю системи нормальних рівнянь для степеневого базису:

Неважко побачити, що для формування цієї розширеної матриці, достатньо обчислити тільки елементи першого рядка і двох останніх стовбців, решта елементів не є "оригінальними" і заповнюються за допомогою циклічного присвоювання.

Для розв’язання систем рівнянь з матрицею Грама розроблені методи сингулярного розкладу. Якщо ж , то такі системи можна розв’язувати і більш простим методом виключення Гауса.