- •Что такое натуральное число? Как обозначается множество натуральных чисел?
- •Что такое число ноль
- •Как определяется операция сложения натуральных чисел?
- •Как определяется операция вычитания натуральных чисел?
- •Какие свойства операции сложения можно наблюдать исходя непосредственно из смысла натуральных чисел и смысла операции сложения смысла?
- •Можно ли математически доказать коммутативность, ассоциативность сложения и свойство нуля по отношению к сложению?
- •Как определяется операция умножения натуральных чисел? Можно ли сказать, что операция умножения является логической конструкцией изготовленной
- •Можно ли сказать, что числа участвующие в операции умножения имеют одинаковый смысл, как это имеет место при операции сложения?
- •Каковы главные 4 свойства операции умножения натуральных чисел?
- •Как можно убедиться в справедливости 4-х главных свойств умножения натуральных чисел. Можно ли их математически доказать?
- •Как определяется операция деления на натуральных числах? Всегда ли она выполнима?
- •Что такое n-ая степень некоторого натурального числа k?
- •Можно ли сказать, что определение n-ой степени некоторого числа формально совпадает с определением умножения некоторого числа на число n?
- •Каковы основные свойства операции возведения в степень?
- •Как была названа числовая система, построенная из натуральных чисел таким образом, чтобы операция вычитание была всегда выполнима?
- •Что такое отрицательные натуральные числа? Имеют ли они смысл?
- •Чему равно произведение целого числа противоположного n и числа противоположного числу m ?
- •Можно ли естественный порядок натуральных чисел распространить на все целые числа?
- •Какое важное изменение в свойствах неравенств произошло при переходе от натуральных чисел к целым числам?
- •Сколькими способами рациональное число может быть представлено в виде дроби? Есть ли среди этих способов некий единственный, особый?
- •В каких случаях возникает необходимость приведения дробей к общему знаменателю?
- •Каковы правила арифметических операция для рациональных чисел в форме дробей?
- •Если рациональные числа рассматривать в их естественном порядке, то в каком направлении их можно продолжать бесконечно?
- •Какой важный формальный недостаток системы целых чисел был устранен построением системы рациональных чисел?
- •Если рациональные числа рассматривать в их естественном порядке, то в каком направлении их можно продолжать бесконечно?
- •Что такое процент некоторой величины? Как найти заданное число процентов от известной величины?
- •Что явилось главным мотивом для создания действительных чисел?
- •Можно ли в рамках действительных чисел рассматривать степени действительного числа с действительным показателем?
- •Сохранились ли при этом формально-алгебраические свойства степеней?
- •Что такое модуль и аргумент комплексного числа?
- •Как вычислить модуль и аргумент комплексного числа?
- •Какие операции были определены на комплексных числах?
- •Каков смысл комплексного числа?
- •Каков смысл символа I?
- •В чем суть позиционного изображения натуральных чисел?
- •Каковы три важнейших преимущества позиционных систем перед другими способами изображения и именования натуральных чисел?
- •Какая система изображения чисел была в древнем Вавилоне?
- •Каково главное предположение о том, почему возникла и получила распространение десятичная система?
- •Что дало возможность использовать десятичную систему изображения чисел не только для представления натуральных чисел, но и любых рациональных чисел?
- •Какие позиционные системы представления чисел используются в компьютерной арифметике? Почему?
- •Каковы признаки делимости целого числа на 2, на 3, на 5, на 6, на 9, на 10 в десятичной системе представления натуральных чисел?
- •Как округлить рациональное число в десятичной форме до заданного разряда?
- •Как представить обыкновенную дробь в виде десятичной с точностью до заданного разряда с недостатком? с избытком?
- •Какое (рациональное) выражение называется многочленом?
- •Какие элементы многочлена называются подобными? Что означает выражение «привести подобные»?
- •Какие операции можно совершать с многочленами?
- •Какое выражение называется рациональной дробью? Привести примеры.
- •В чем отличие дробного рационального выражения от рациональной дроби? Пример?
- •В чем состоит основное свойство рациональной дроби?
- •Каким образом производятся арифметические операции или действия с рациональными дробями?
- •Какие два выражения с переменными или алгебраических выражения называются тождественно равными?
- •Что называется тождеством?
- •Что называется тождественным преобразованием данного алгебраического выражения?
- •С какой целью выполняются тождественные преобразования алгебраических выражений?
- •Трудно ли производить тождественные преобразования?
Какие два выражения с переменными или алгебраических выражения называются тождественно равными?
Два
алгебраических выражения называются
тождественно равными, если они имеют
одинаковые области допустимых значений
и равны между собой при всех допустимых
значениях переменных. Например: выражения
и
- тождественно равные. Они aимеют
одинаковые ОДЗ (любые числа a
и b)
и их значения равны при любых значениях
переменных. Выражения :
и
тоже
тождественно равны. Их ОДЗ совпадают (
хотя, на этот раз это уже не все числа)
и при всех значениях из ОДЗ значения
выражений совпадают. Однако, выражения
и
- имеют различные ОДЗ, но на общей части
своих ОДЗ принимают одинаковые значения
при всех значениях переменных. В этом
случае говорится, что исходные выражения
тождественны на определенном множестве.
В данном случае рассматриваемые выражения
тождественны при всех значениях а и b,
кроме а=0 и b=0.
Что называется тождеством?
Тождеством называется равенство по обе стороны которого стоят тождественные выражения.
Что называется тождественным преобразованием данного алгебраического выражения?
Переход от одного алгебраического выражения к другому, но тождественно ему равному называется тождественным преобразованием.
С какой целью выполняются тождественные преобразования алгебраических выражений?
Алгебраические выражения возникающие в ходе решения каких-либо задач или построения математических моделей каких-нибудь явлений ( в любой области
деятельности ) часто имеют громоздкий, неуклюжий, трудночитаемый вид. В этих случаях, возникает понятное желание сделать выражение проще, но так,
чтобы оно осталось тождественно равным исходному. Более простое выражение, например, быстрее, удобнее и точнее можно вычислить. С другой стороны,
если выражение является моделью некоторого явления, другая, но тождественная форма этого выражения может помочь увидеть такие свойства явления,
которые невозможно увидеть в другом представлении.
Трудно ли производить тождественные преобразования?
Умение производить тождественные преобразования алгебраических, а в дальнейшем и не только алгебраических выражений является очень важным моментом в применении математики как для прикладных целей, так и для решения внутренних, чисто математических задач. Техника преобразований математических выражений может быть весьма изощренной и представлять собой определенное искусство. Важным арсеналом технических инструментов для таких преобразований являются уже известные формы представлений или формулы. Чем больше формул и представлений известно, тем более вероятно, что будет найдено требуемое преобразование. Вот почему необходимо помнить некоторые базовые формулы в математике. Школьная программа предусматривает довольно большой набор простых, но важных соотношений и приемов, при помощи которых производятся различные преобразования математических выражений. Для успешного применения математики нужно не только хорошее владение математическими понятиями и определениями, но и хорошая техническая вооруженность, которая проявляется в знании и владениями определенными приемами и методами, техникой алгебраических преобразований в том числе. Вообще же, часто, увидеть, возможность того или иного преобразования дело не только знаний и технической оснащенности математика, но и его способностей или таланта, как например, в шахматах – оба шахматиста хорошо знают правила игры в шахматы и могут обладать одинаковым набором технических приемов игры, тем не менее, выигрывает один из них.
-------------------------------------------------------------------------------------------------------
