- •1 Вариант.
- •11.Выбрать два верных свойства:
- •2) График функции симметричен относительно оси у
- •15. Составьте верные утверждения
- •2 Вариант
- •3.Вычислите
- •12 Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14 Соотнесите формулы дифференцирования:
- •15 Сопоставьте формулу и вид неопределенности
- •3) Ответ:
- •4. Найти предел функции
- •12. Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14. Соотнесите формулы дифференцирования:
- •3)Ответ :
- •14. Соотнесите формулы дифференцирования:
- •3) Ответ: 0
- •12.Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14. Соотнесите формулы дифференцирования:
- •3) Ответ:
- •6. Вычислите
- •7. Вычислите
- •12.Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14. Соотнесите формулы дифференцирования:
- •3) Ответ: 1 ,2, 3
- •9. Вычислите :
- •12 Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14.Соотнесите формулы дифференцирования:
- •3) Ответ: 12
- •8 Вариант
- •12.Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14.Соотнесите формулы дифференцирования:
- •3) Ответ: 0
- •9Вариант
- •12. Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •14 Соотнесите формулы дифференцирования:
- •12. Точка движется прямолинейно по закону Найдите величины скорости и ускорения в момент времени ?
- •13.Найти сходящиеся ряды
- •14.Соотнесите формулы дифференцирования:
- •16. Установить соответствие между функцией и её первообразной
- •3) Ответ: 0
- •19. Составьте правильную последовательность решения dx
14.Соотнесите формулы дифференцирования:
1) а)
2) б)
3) в)
1- а 2-б 3-в
15. 1) а)
2) б)
3) в)
1-а 2-б 3-в
16. Установить соответствие между функцией и её первообразной
a)f
(x) =
б)f
(x)=
в)f
(x)=1
1)F(x
) =12+
2)F(
x)=
3)F(x
) =c
А-3 б-1 в-2
17.
Достаточное
условие выпуклости : Функция непрерывная
на некотором промежутке и дважды
_______________ на этом промежутке будет
________ вверх, если ее вторая производная
на этом промежутке ____________
1)Дифференцируемая
2)Выпукла
3)Отрицательна
1, 2, 3
18 Вычислите производную функции в определенной точке:
в
точке
1)
2)
3) Ответ: 0
19. Составьте правильную последовательность решения dx
А)
Б)
В)Ответ: ) -6х+9х+с
Б, а, в
20. Дан числовой ряд
Найти частичную сумму S3
39
