Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СПОРТИВНОЙ МЕТРОЛОГИИ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
50.96 Кб
Скачать

1.5. Шкалы измерений

Существует множество определений «измерения», несколько отличающихся друг от друга в зависимости от точки зрения исследователя. Общим для всех определений является следующее: измерение есть приписывание чисел вещам в соответствии с определёнными правилами. Измерить рост человека – значит приписать число расстоянию между макушкой головы и подошвой ног, найденному с помощью линейки. Измерение коэффициента интеллектуальности студента – это присвоение числа характеру ответной реакции, возникающей у него на группу типовых задач. Измерение преобразовывает определённые свойства наших восприятий в известные, легко поддающиеся обработке вещи, называемые числами. Каким безынтересным был бы мир, если бы мы не измеряли! Разве не полезно физику знать, что сталь плавится при высокой температуре, а путешественнику, что Сочи – это «город, вытянутый вдоль побережья Чёрного моря»? Известно, какую важную роль играет измерение в физиологических, педагогических и психологических исследованиях в спорте.

В спортивной практике наибольшее распространение получили четыре шкалы измерений: шкала наименований, шкала порядка, шкала интервалов, шкала отношений. Каждая из них специфична, имеет своё практическое приложение, способ и принцип измерения, свой набор математических процедур.

Шкала наименований (номинальные измерения). Номинальное измерение – присвоение обозначения или обозначений. Схема классификации видов в биологии – примеры номинальных измерений. В медико-биологических науках часто кодируют «пол», обозначая индивидов женского рода нулем, а мужского – единицей.

Числа, которые мы присваиваем в номинальном измерении, обладают всеми свойствами любых других чисел. Мы может складывать их, вычитать, делить или просто сравнивать. Но если процесс присвоения чисел предметам представлял собой номинальное измерение, то наши действия с величиной, порядком и прочими свойствами чисел вообще не будут иметь никакого смысла по отношению к самим предметам, поскольку мы не интересовались величиной, порядком и другими свойствами чисел, когда присваивали их. При номинальных измерениях используется исключительно та особенность чисел, что 1 отличается от 2 или 4 и что если предмет А имеет 1, а предмет В – 4, то А и В различаются в отношении измеряемого свойства. Отсюда вовсе не следует, что в «В» содержится больше свойства, чем в «А».

каждым спортсменом за период соревнования (тайма, матча и т. п.).

Шкала порядка называется ранговой, или неметрической. Шкала измерения может не иметь одинаковых интервалов между рангами. Она позволяет установить равенство или неравенство измеряемых объектов, а также определить характер неравенства в виде суждений: «больше-меньше», «лучше-хуже» и т. п. С помощь шкалы порядка можно измерять не только количественные, но и качественные показатели в баллах. Наибольшее распространение эти шкалы получили в педагогике, психологии, социологии.

В спортивной практике шкала порядка применяется для установления занятого места в соревнованиях, при оценке физической подготовленности, предпочтений технических и тактических действий спортсменом, используя ранговые критерии.

Шкала интервалов отличается строгой упорядоченностью чисел и определёнными интервалами между рангами. Интервальное измерение возможно, когда измеритель способен определить не только количество свойства в предметах, но также фиксировать равные различия между предметами. Для интервального измерения устанавливается единица измерения (градус, метр, сантиметр, грамм и т. д.). В этой шкале нулевая точка выбирается произвольно. Например, при измерении угла в суставе точкой отсчёта может быть нуль или любое начальное значение в градусах, так же как при измерении температуры, потенциальной энергии поднятого груза может произвольно определяться начальная точка. Важная особенность интервального измерения состоит в том, что оцениваемое свойство предмета вовсе не пропадает, когда результат измерения равен нулю.

Шкала отношений отличается строгой определённостью нулевой точки.

Здесь нулевая точка не произвольна, а указывает на полное отсутствие измеряемого свойства. Измеритель может заметить отсутствие свойства и имеет единицу измерения, позволяющую регистрировать различающиеся значения признака. Равные различия чисел, присвоенные при измерении, отражают равные различия в количестве свойства, которым обладают оцениваемые предметы. Кроме того, раз нулевая точка не произвольна, а абсолютна, то не лишено смысла утверждение, что у А в два, три или четыре раза больше свойства, чем у В.

Длина и масса тела являются примерами шкал измерения отношений. Нулевой длины тела человека вообще не существует, а мужчина длиной тела 180 см в два раза выше мальчика, имеющего 90 см. Шкала отношений называется так потому, что отношения чисел для неё существенны. Эти отношения можно интерпретировать как отношения значений свойств измеряемых объектов.

В спорте по этой шкале измеряют расстояние, силу, скорость и многие другие переменные. Универсальность шкалы отношений заключается в возможности измерения разности чисел, отсчитанных по шкале интервалов. Измеряя какую-либо величину, можно определить её отношение к соответствующей единице измерения (например, отношение массы штанги к массе тела, длины прыжка к длине сегмента тела и т. п.).