- •2. Клетка - элементарная генетическая и структурно-функциональная биологическая система.
- •3. Клеточная теория. Современное состояние клеточной теории.
- •7. Строение и функции оболочки животной эукариотической клетки.
- •8. Трансмембранный транспорт веществ в клетку.
- •9. Цитоплазма: основное вещество, цитоскелет, органеллы.
- •2. Наследственный аппарат клеток. Химическая и структурная организация хромосом.
- •4. Геном клетки.
- •5. Молекулярное строение гена у эукариот. Уникальные гены и повторяющиеся последовательности на нити днк, их функциональное значение.
- •4. Репликация днк, характеристика ее этапов. Авторепродукция хромосом
- •5. Фазы митоза, их характеристика
- •6. Механизмы регуляции митотической активности.
- •9. Размножение. Классификация его форм и способов.
- •11. Биологические аспекты репродукции человека.
- •7. Закон расщепления. Доминантность и рецессивность.
- •8. Закон чистоты гамет. Анализирующее скрещивание.
- •3 Части семян жёлтых морщинистых, 3 части семян – зелёных гладких и I часть семян – зелёных морщинистых.
- •9 Частей семян ж.Г. : 3 части семян ж.М. : 3 части семян з.Г. : I часть семян з.М.
- •Контролируемых генами х- и у-хромосом человека.
- •Работы т.Моргана по сцепленному наследованию признаков.
- •Картирование генов в хромосомах. Генетические и цитологические карты хромосом.
- •Неаллельных генов в детерминации признаков.
- •Множественные аллели. Наследование групп крови по системе аво.
- •Комплементарность. Эффект положения.
- •Полимерия. Полигенное наследование как механизм наследования количественных признаков.
- •Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, поле действия гена, плейотропия, генокопии.
- •Перенос биологической информации на белок (трансляция). Структура, виды и роль рнк.
- •Гипотеза «один ген – один фермент», ее современная трактовка.
- •5. Регуляция экспрессии генов у прокариот и эукариот.
- •Генные мутации. Понятие о генных болезнях.
- •Антимутационные барьеры организма.
- •Репарация генетического материала. .
- •Генные болезни, механизмы их развития, наследования, частота возникновения.
- •1. Структурные мутации хромосом (хромосомные аберрации).
- •Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
- •Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
- •Гаплоидия, полиплоидия, анеуплоидия.
- •4. Медико-генетическое консультирование.
- •5. Пренатальная диагностика:
- •Общая характеристика гаструляции. Особенности гаструляции у амфибий и птиц. Гаструляция у высших (плацентарных) млекопитающих.
- •Роль наследственности и среды в эмбриональном развитии.
- •Морфогенез (формообразование), его основные процессы:
- •5. Интеграция в развитии, целостность онтогенеза. Роль гормонов в координации процессов развития.
- •Биологические аспекты старения и смерти.
- •Генетический контроль роста. Роль нервной и эндокринной системы в регуляции процессов роста.
- •Старение как продолжение развития. Программные теории старения.
- •Процессы, ведущие к старению на разных уровнях организации.
- •3. Репаративная регенерация как процесс вторичного развития, ее биологическая сущность.
- •4. Характерные признаки репаративной регенерации, атипичная регенерация.
- •5. Масштаб регенерации, его границы у разных видов животных.
- •6. Способы репаративной регенерации: эпиморфоз и морфоллаксис.
- •7. Регенерация органов и тканей у высокоорганизованных животных, человека.
- •8. Регенерационная гипертрофия: молекулярные, клеточные и системные механизмы.
- •9. Эволюция регенерационной способности.
- •10. Источники регенерационного материала при разных способах восстановления.
- •13. Регенерация патологически измененных органов.
- •Организм как открытая саморегулирующая система. Общие (кибернетические) закономерности гомеостаза живых систем.
- •4. Клеточные механизмы гомеостаза.
- •5. Системные механизмы гомеостаза:
- •1. Популяционная структура человечества. Демографические и генетические характеристики популяции людей. Демы, изоляты.
- •2. Дрейф генов и особенности генофондов изолятов.
- •3. Влияние мутационного процесса, миграции, изоляции, популяционных волн на генетическую конституцию людей.
- •4. Специфика действия естественного отбора в человеческих популяциях. Отбор против гетерозигот и гомозигот.
- •5. Отбор и контротбор.
- •6. Генетический полиморфизм человечества.
- •И кровеносной систем хордовых.
- •Главные эволюционные характеристики органов и функций:
- •2. Главные принципы эволюции органов и функций:
- •Филогенез органов дыхания хордовых
- •3. Филогенез органов кровообращения у хордовых:
- •2. Филогенез выделительной системы хордовых:
- •Определение и структура экологии.
- •Среда как экологическое понятие. Факторы среды. Понятие экологической валентности.
- •Понятие экосистемы, биогеоценоза, антропобиогеоценоза.
- •Изменение биоценозов во времени. Экологические сукцессии.
- •Биосфера как естественноисторическая система. Современные концепции биосферы.
- •Живое вещество: количественная и качественная характеристика. Роль в природе планеты.
- •Функции биосферы в развитии природы Земли.
- •Круговорот химических элементов как главная функция биосферы.
- •Эволюция биосферы.
- •Возрастающее влияние человека на биосферу. Экологические последствия.
- •Возникновение и развитие ноосферы.
- •Предмет и задачи экологии человека.
- •Общая характеристика среды обитания людей.
- •3. Понятие адаптивного типа.
- •4. Человек как творческий экологический фактор. Антропогенные экосистемы.
- •12 Видов европейских бабочек, а некоторые виды других насекомых перешли к питанию лепестками ее цветков и семенами будлеи.
- •5. Адаптация человека к среде обитания: биологические и социальные аспекты.
- •6. Проблемы охраны окружающей среды и рационального природопользования.
2. Наследственный аппарат клеток. Химическая и структурная организация хромосом.
Основное вещество ядра – хроматин. Он состоит из ДНК (~35%), белков (~65%) , а также углеводов, РНК, Мg2+ (менее 1%). Белковая часть хроматина представлена кислыми белками и оснОвными белками (гистонами). На гистоны приходится 80% от всех белков, и они играют важнейшую роль в хроматине. Выделяют пять классов гистонов: Н1, Н2А, Н2Б, Н3, Н4.
Т.к. гистоны являются осноОвными или щёлочными белками, они имеют положительный суммарный заряд (благодаря большому содержанию аминокислот лизина и аргенина, которые имеют по две аминогруппы, заряженные положительно). Суммарный заряд ДНК отрицательный (счет остатка фосфорной кислоты), поэтому белки прочно связаны с молекулой ДНК.
Перед митозом хроматин уплотняется за счет спирализации ДНК и приобретает определённую форму и размеры. Теперь он называется хромосомой. Хромосома – структурное образование, хроматин – химический эквивалент хромосом.
Структурная организация хромосом достаточно сложная.
В интерфазном ядре принято выделять 5 уровней структурной организации хромосом:
1) формирование нуклеосом. Белки гистоны H2A, H2B, H3, H4, (по 2 молекулы каждого) образуют остов нуклеосомы (катушку), вокруг этой основы ДНК делает примерно 2 витка (146 п.н.). Соседние нуклеосомы связываются гистоном H1, так образуется нуклеосомная нить. Диаметр нуклеосомной нити 11нм, размер молекулы ДНК уменьшается в 7 раз.
2) формирование соленоидоподобных фибрилл. Длина ДНК на этом уровне уменьшается в 50 раз.
3) формирование петель. Соленоидоподобные фибриллы складываются в петли. ДНК человека образует до 2.000 петель. Длина ДНК уменьшается в 1.000 раз. Эти три уровня спирализации ДНК происходят во время интерфазы.
4) формирование хроматид; петли ещё больше спирализуются, и диаметр хроматиды становится равным 700нм.
5) образование хромосомы за счёт объединения хроматид; диаметр хромосомы = 1400нм.
4 и 5 уровни спирализации ДНК происходит во время профазы митоза. В конечном итоге размер ДНК уменьшается в 10.000 раз.
Значение компактизации хромосом состоит в облегчении их перемещения в дочерние клетки во время митоза.
3. Характеристика ДНК. Молекулярное строение гена у прокариот и эукариот.
Роль хранителя наследственной информации у всех организмов принадлежит ДНК. Эта кислота была открыта в 1869г. Ф. Мишером в ядрах лейкоцитов, но строение её было выяснено только в 1953г. Дж. Уотсоном и Ф. Криком. В своих исследованиях эти учёные опирались на данные рентгеноструктурного анализа молекулы ДНК и на установленное Э. Чаргаффом правило: в молекуле ДНК число пуриновых оснований строго соответствует числу пиримидиновых оснований.
ДНК – полимер, состоящий из десятков (или сотен) миллионов мономеров – дезоксирибонуклеотидов. В состав каждого дезоксирибонуклеотида входит азотистое основание, углевод (сахар дезоксирибоза) и остаток фосфорной кислоты (фосфат). Нуклеотиды ДНК отличаются друг от друга основаниями. Различают пуриновые основания: аденин (А) и гуанин (Г) и пиримидиновые основания: цитозин (Ц) и тимин (Т). Нуклеотиды ДНК называются соответственно: адениловый, гуаниловый, цитидиловый, тимидиловый.
Нуклеотиды ДНК соединены последовательно в цепочку за счет фосфодиэфирных мостиков, образующихся между углеводом одного нуклеотида и остатком фосфорной кислоты соседнего. Иначе говоря, остаток фосфорной кислоты связывает углеводы соседних нуклеотидов.
Читать последовательность нуклеотидов в ДНК принято от пятого атома сахара к третьему атому. Поэтому в цепочке ДНК первым будет стоять 5' нуклеотид, а последним 3'нуклеотид. Поэтому полинуклеотидная цепь полярной.
ДНК – это две цепочки, закрученные вправо и антипараллельные (напротив 5' нуклеотида одной цепочки расположен 3' нуклеотид второй цепочки).
В каждой цепочке, основания которых обращены внутрь спирали и образуют пары таким образом, что (А) одной цепи всегда находится против (Т) другой цепи, а (Г) – против (Ц). Между этими парами оснований образуются водородные связи: две между А и Т и три между Г и Ц. В каждом сочетании оба нуклеотида как бы дополняют друг друга, они комплементарны. Комплементарность – взаимное соответствие в химическом строении молекул, обеспечивающее их взаимодействие. Комплементарные структуры подходят друг к другу как ключ к замку.
На один виток спирали ДНК приходится 10 нуклеотидных остатков. Т.к. расстояние между соседними нуклеотидами = 0,34 нм, шаг спирали составляет 3,4 нм.
Диаметр спирали – около 2 нм. Длина спирали может измеряться в метрах.
Описанное выше строение присуще В-форме ДНК (правозакрученной). А. Рич обнаружил существование левозакрученной ДНК, у неё ход цепей зигзагообразный, а не гладкий. Это Z-форма ДНК, она образуется во время кроссинговера.
