Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 11. Функции.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
310.78 Кб
Скачать

11.3. Сложная функция

Часто приходится рассматривать такую функцию y=f(x), аргумент которой сам является функцией вида x = g(t) некоторой новой переменой t. В таком случае говорят, что переменная y представляет собой сложную функцию аргумента t, а переменную x называют промежуточным аргументом. Указанную функцию называют также суперпозицией функций f и g и обозначают y = f[g(t)] или y = f ◦g.

Очевидно, что значения функции g не должны покидать пределы области определения функции f. Например, полагая z =log y, y=sin x, мы можем рассматривать лишь такие x , для которых sin x>0, иначе выражение log sin x не имело бы смысла

Стоит заметить, что характеристика функции как сложной связана не с природой функциональной зависимости z от х, а лишь со способом задания этой зависимости.

Например, пусть

Здесь функция cos x оказалась заданной в виде сложной функции

Пример 11.3. (1).

Проиллюстрируем возникновение понятия сложной функции. Предположим, что материальная точка М равномерно и с постоянной угловой скоростью ω вращается по окружности радиуса R.

Рис. 11.3

Найдем закон движения проекции М’ точки М на некоторую (горизонтальную) ось Oy , проходящую через центр О окружности и лежащую в ее плоскости (см рис. 11.3.). Предположим, что в начальный момент времени t=0 движущаяся точка М находится в точке М0 пересечения окружности с осью Oy . Обозначим через y координату проекции М’ точки М на ось Oy, а через x – угол М0ОМ, на который повернется точка М за время t. Очевидно, что y = R cosx, где x = ωt. Тогда координата y проекции М’ представляет собой сложную функцию времени t вида y = R cosx, где x = ωt. Эту сложную функцию можно записать в виде y = R cos ωt.

Движение по закону y = R cos ωt в механике называется гармоническим колебанием.

Пример 11.3(2)

Решение:

1)По определению композиции функций имеем

11.4. Обратная функция.

Пусть y есть функция аргумента x: y=f(x). Задавая значения х, будем получать соответствующие значения y. Можно, однако, считая аргументом y и вычислять соответствующие значения х. В таком случае данное уравнение будет определять х как функцию от y :

,

где функция для всех допустимых значений y

Иногда придерживаются стандартных обозначений: под х понимают независимую переменную, под y – функцию, то есть зависимую переменную. В таком случае обратную функцию следует писать в виде

Вспомним, что нами было показано, что для построения обратного отображения (в данном случае функции) необходимо и достаточно, чтобы исходное отображение было биективным. В случае, если разным значениям переменной х может соответствовать одно и то же значение y (как, например, в тригонометрических функциях), рассматривается сужение функции на промежуток, на котором разным х соответствуют разные y.

Очевидно, что функция, обратная к функции есть функция y = f(x).. Поэтому функции с характеристиками f и φ, связанные отношением

, являются взаимно обратными. Одна из них называется прямой, другая – обратной. Одна та же кривая y = f(x) представляет собой график данной функции и график обратной ей функции, смотря по тому, на какой из осей ox или oy, откладываются значения аргумента.

Пример 11.4

Построить функцию, обратную данной

Функция убывает на всей области определения (х – любое действительное число≠ -3), поэтому у нее есть обратная, которую можно найти, разрешая исходное уравнение относительно х (выражаем х через y и меняем местами х и y). Искомая обратная функция: