Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Госы ответы

.pdf
Скачиваний:
123
Добавлен:
08.06.2020
Размер:
2.02 Mб
Скачать

калийных удобрений позволяет довольно существенно повысить урожайность. Недостаток же фосфора или азота в этот период не может быть возмещён в последующем.

В полевых условиях критический период обычно совпадает с пониженной м/б активностью, минерализующих органическое вещество почвы. Это проявляется ранней весной, когда низкие температуры тормозят м/б деятельность почвы.

Большая требовательность молодых растений к условиям минерального питания объясняется высокой напряженностью синтетических процессов, происходящих в это время в растительном организме, и одновременно слаборазвитой корневой системой.

Например, у зерновых злаков закладка и дифференциация репродуктивных органов начинается уже в период развертывания первых трех-четырех листочков. Недостаток азота в этот период приводит к уменьшению формирования числа колосков и снижению урожая. Последующее нормальное питание азотом не может исправить ущерба, нанесенного растению в этот период.

Максимальный период- период, когда среднесуточное потребление элемента питания достигает своего максимума. Этот период соответствует более поздним фазам развития растений. В большинстве случаев он совпадает с периодом наибольшего накопления сухой биомассы. Поэтому в молодом возрасте растения содержат больше азота, фосфора, калия и др. на единицу сухого вещества, чем в более поздние периоды развития.

Питание растений с учётом их биологических особенностей можно регулировать по периодам роста, что позволяет формировать величину и качество урожая. Периодичность питания растений служит теоретическим обоснованием дробного внесения удобрений (в разные слои почвы и в разные сроки). При одноразовом внесении удобрений в один слой почвы не всегда можно добиться полного использования их потенциальных возможностей. Поэтому правильная система питания растений в полевых условиях предусматривает сочетание основного удобрения (на глубину 15-25 см), припосевного (3-10 см), иногда корневых и некорневых подкормки.

Так, основное удобрение должно обеспечивать питание растений на протяжении всей вегетации, поэтому до посева, как правило, применяют все подлежащие внесению органические удобрения и почти все количество минеральных удобрений.Для обеспечения растений питательными веществами, особенно фосфором, в начальный период применяют припосевное удобрение (в рядки, при посадке – в лунки, гнезда).

Воздействовать на величину и качество урожая можно путем при помощи подкормок в различные периоды вегетации.

141

Например, ячмень потребляет минеральные элементы в основном в период от кущения до выхода в трубку, у пшеницы период потребления несколько более растянут, у свеклы максимальное потребление в середине вегетации, у плодовых деревьев наблюдается два периода интенсивного усвоения элементов питания: рано весной и осенью, после затухания роста и съёма плодов, что связано с осенним ростом корней и закладкой плодовых почек. Травы, сахарная свекла отличаются длительным периодом поглощения питательных веществ. Наибольшее количество элементов минерального питания яровые зерновые усваивают в период от выхода в трубу до колошения.

Капуста усваивает наибольшее количество питательных веществ во время формирования кочана.

Злаковые, как правило, наиболее требовательны к азотному питанию в период формирования ассимиляционного аппарата и в период дифференциации репродуктивных органов.

Сахарная свекла нуждается в повышенном уровне обеспеченности калием в период сахаронакопления.

Лён наиболее чувствителен к уровню азотного питания в период от «елочки» до бутонизации. К уровню калийного питания лён особенно чувствителен в период от бутонизации до цветения.

Огурцы требовательны к питанию азотом в период формирования ассимиляционного аппарата, а к питанию фосфором – перед цветением. В период плодоношения огурцы нуждаются в усиленном обеспечении азотом и калием.

в начальный период роста растения нуждаются в больших количествах фосфора по сравнению с азотом и калием. Усиление азотного и отчасти фосфорного питания в период бутонизации и цветения способствует увеличению урожая зерновых. Повышенное азотное питание в период образования листовой массы и усиление фосфорно-калийного питания в дальнейшем позволяют получить хорошие урожаи корнеклубнеплодов.

Потребность большинства растений в азоте уменьшается к началу плодообразования, при этом возрастает роль фосфора и калия в питании растений. Однако в целом в период плодообразования размеры потребления питательных веществ снижаются, и в конце вегетации процессы жизнедеятельности в растениях осуществляются в основном за счет реутилизации ранее накопившихся элементов питания.

142

59.Фосфоритная мука.Состав, свойства и условия эффективного применения.

Состав: Получается размолом фосфорита до состояния тонкой муки. Фосфор содержится в виде гидроксил-апатита, карбонат-апатита, фтор-апатита и находится в форме Са3(РО4)2. Эти соединения нерастворимы в воде, слабых кислотах н слабодоступны для большинства культур.

Эффективность эффективность фосфоритной муки оказывают влияние следующие факторы: происхождение и состав фосфоритов, тонина помола муки, биологические особенности растений, свойства почвы и кислотность сопутствующих удобрений:

1.Чем меньше тонина помола, тем действие фосфоритной муки эффективнее;

2.Чем выше гидролитическая кислотность почвы, тем эффективнее действие фосфоритной муки;

3.При одинаковой гидролитической кислотности действие фосфоритной муки повышается с уменьшением емкости поглощения почв;

4.К группе растений, обладающих хорошей способностью усваивать труднорастворимые фосфаты, отнесены люпин, гречиха, горчица; близко к ним примыкают горох, эспарцет, донник и конопля. Все злаки, лен, свекла, картофель, вика могут использовать фосфор из фосфоритной муки только после его соответствующего взаимодействия с кислыми почвами. Наименее усваивают фосфор фосфоритной муки ячмень, яровая пшеница, лен, просо, томат, репа;

5.Большинство растений в первый период их жизни слабо усваивают труднорастворимые фосфаты, а в дальнейшем эта способность возрастает;

6.Усвоение фосфора из фосфоритной муки зависит от сопутствующих удобрений: физиологически кислые удобрения повышают эффективность фосфоритной муки, а физиологически щелочные удобрения и известковые материалы — снижают.

60.Химическая мелиорация (известкование и гипсование) почв. Методы

установления нуждаемости почв и с.-х. растений в химических мелиорантах и расчёта доз. Особенности известкования почвы в севооборотах различной специализации.

Химические мелиорации- улучшают хим св-ва почвы (известкование кислых почв, гипсование солончаков и солонцов, уд). В нашей стране значительные площади занимают кислые и солонцовые почвы. Наличие в поглощённом состоянии в кислых почвах большого кол-ва ионов водорода и алюминия, а в солонцовыхкатионов натрия резко ухудшает свойства этих почв, их плодородие.

143

ИЗВЕСТКОВАНИЕ КИСЛЫХ ПОЧВ Большинство культурных растений и почвенных микроорганизмов лучше

развиваются при слабокислой или нейтральной реакции (рН 6-7).

При внесении в почву извести под влиянием CО2, находящегося в почвенном растворе, известь превращается в растворимый бикарбонат кальция:

СаСО3 + H2O + CO2 = Са(НСО3)2

Са(НСО3)2 + 2H2O=Са(ОН)2+2H2O+2 CO2

Са(ОН)2↔Са2++2ОН-.

Катионы Са2+ вытесняют из ППК ионы водорода, и кислотность нейтрализуется:

Н

ППК Н + Са2+ +2НСО3-→(ППК)Са+2Н2СО3.

Н

При внесении полной нормы извести устраняется актуальная и обменная кислотность, значительно снижается Нг, повышается содержание Са в почвенном р-ре и степень насыщенности почвы основаниями.

При внесении необходимых норм извести снижается содержание подвижных соединений алюминия, железа и марганца, они переходят в нерастворимую форму и поэтому устраняется вредное действие их на растений.

Эффективность известкования зависит от степени кислотности почвы, особенностей возделывания культур, нормы и вида применяемых удобрений. Степень нуждаемости почв в известковании можно установить на основе а/х анализа почвы (по величине обменной кислотностирНКСl). Очень сильнокислые – рН<4,0; сильнокислые рН – 4,1-4,5; среднекислые рН – 4,6- 5,0; слабокислые рН – 5,1-5,5. Близкая к нейтр. 5,6-6,0. Нейтральная – рН больше 6, в известковании такая почва не нуждается! По степени насыщенности почвы основаниями (V) судят о нуждаемости почвы в известковании. Если V=50% и ниже - нуждаемость в известковании сильная, 50-70%- средняя, 70% и выше - слабая и V>80%, почва в известковании не нуждается.

При известковании необходимо учитывать также особенности возделываемых культур в севообороте. Норму извести можно установить по величине гидролитической кислотности.

ДозаСаСО3 = Нг*1,5, т.к.

Если для известкования применяют известковые удобрения, содержащие не СаСО3, а MgСО3 или СаО и Са(ОН)2, то вычисленную норму извести умножают на коэффициент 0,84 для MgСО3, 0,74для Са(ОН)2 и 0,56для СаО.

Однако полная норма, рассчитанная по Нг, не для всех растений и не на всех почвах является оптимальной.

144

На средне- и тяжелосуглинистых д-п почвах для ржи, оз и яр пшеницы, ячменя, овса, кукурузы, сах, корм и стол свёклы, клевера, люцерны, зернобобовых, капусты, лука она равна полной норме, рассчитанной по Нг. На мало буферных лёгких почвах норму извести необходимо снижать на 2530% по сравнению с полной. Оптимальная норма для льна, подсолнечника, томатов, картофеля, люпина, сераделлы- ½-2/3 полной нормы.

Норму извести можно определить и по величине рН с учётом мех состава.

Способы внесения

Полные нормы вносят сразу или в несколько приёмов. При внесении за 1 приём достигается более быстрая и полная нейтрализация кислотности всего пахотного слоя на длительный срок.

Известь заделывают осенью под вспашку зяби или весной под её перепашку.

Применение известковых удобрений в севообороте

В севооборотах с овощными и кормовыми культурами применяют все виды известковых удобрений; лучше вносить их в полной норме за 1 приём. В овощных севооборотах известь вносят под капусту или корнеплоды. В севооборотах с зерновыми и кормовыми в первую очередь известкуют поля, отводимые под наиболее чувствительные к кислотности растения.

Лён и картофель отрицательно реагируют на известкование высокими нормами. При достаточном внесении органических и минеральных удобрений с повышенной нормой калия известкование полными нормами можно проводить и в севооборотах со льном и картофелем.

ГИПСОВАНИЕ СОЛОНЦЕВАТЫХ И СОЛОНЦОВЫХ ПОЧВ.

Эти почвы хар-ся большим сод-ем натрия в ППК и щелочной реакцией почвенного р-ра. Слабосолонцеватые сод-т 5-10% поглощённого натрия, солонцеватые- 10-20% и солонцыболее 20%.

При внесении в почву гипса в почвенном р-ре устраняется сода, а поглощённый натрий вытесняется и заменяется кальцием:

Na2CO3+CaSO4=CaCO3+Na2SO4.

(ППК)NaNa+ CaSO4= (ППК)Са+ Na2SO4.

Гипс вносят в почву в количестве, достаточном для замещения избытка поглощенного натрия кальцие

м. Разница м/у общим кол-вом обменного натрия и допустимым его содержанием (Na-KT)- кол-во обменного натрия, подлежащего замене на Са.

Для замещения избытка обменного натрия в 1 г почвы потребуется 0,086*(Na-KT)/100 граммов гипса; для вытеснения избытка натрия из слоя почвы в 1 см на площади 1 га необходимо внести гипса (в т на 1 га): 0,086*(Na—КТ)*100 000 000 / 100 * 1 000 000, или после сокращения 0,086*(Na-KT), а для удаления обменного натрия из всего мелиорируемого слоя почвы при объемной массе ее d требуется внести гипса: норма

145

СаS04.2Н20 (в т на 1 га) = 0,086 (Nа-КТ) Нd, где 0,086— 1 мг-экв. СаS04*2Н2О (в г); H —глубина мелиорируемого слоя (в см);d — объемная масса мелиорируемого слоя почвы; Nа — общее содержание обменного натрия (в мг-экв. на 100 г почвы); Т— ёмкость обменного поглощения мелиорируемого слоя (в мг-экв. на 100 г почвы); К—допустимое содержание обменного натрия в почве (в долях Т).

Мелиорирующее действие гипса зависит от степени перемешивания его с почвой, поэтому гипс обязательно заделывают глубокой зяблевой вспашкой, чтобы солонцовый горизонт лучше перемешать с ним и верхним надсолонцовым слоем. На мелких, корковых солонцах весь гипс вносят после вспашки и заделывают культиватором, на средне и глубоко столбчатых солонцах, в которых солонцовый горизонт залегает на глубине 7—20 см, гипс вносят в два приема — часть нормы под плуг с предплужником, а остальное

— после вспашки под культиватор.

Основные агрохимические свойства муки фосфоритной:

эффективное минеральное удобрение, которое кроме основного элемента питания фосфора (Р2О5 не менее 17%), содержит кальций (до 33%), серу, магний, кремний и широкий спектр микроэлементов: Fе, Си, В, Мп, Мо, Zn, Со, причем содержание микроэлементов в фосфоритной муке адекватно их среднему нормальному уровню концентраций в почвах.

способствует повышению урожайности всех сельскохозяйственных культур, устойчивости культур к различным заболеваниям, засухе, морозу, благоприятно влияет на качество сельскохозяйственной продукции;

стимулирует развитие корневой системы растений, она сильнее ветвиться и глубже проникает в почву, что в свою очередь способствует улучшению снабжения растений питательными элементами и влагой;

при внесении в почву ослабляет вредную для растений и микроорганизмов кислотность почвы;

улучшает физико-химические свойства почвы, увеличивает её биологическую активность, улучшает структуру почвы, делает её влаго- и воздухопроницаемой, способствует повышению плодородия почвы;

обладает существенным экономическим и экологическим преимуществом перед водорастворимыми фосфорными удобрениями:

является незаменимым фосфорным удобрением при выращивании многолетних кормовых трав;

внесение с физиологически кислыми азотными удобрениями увеличивает коэффициент их использования на 15-20%, в результате чего снижается их норма внесения;

146

не загрязняет токсичными компонентами почвенные воды и водоемы, не оказывает негативного влияния на почвенную среду и растения с экологических позиций даже при использовании сверхвысоких доз;

не вымывается из почвы в течение 5-7 лет и более.

61. Аутэкология и факториальная экология. Анализ основных факторов окружающей среды (освещенность, температура, влажность).

Аутэкология – влияние среды на организмы. Факториальная экология – исследование явлений, зависимостей и связей между организмами, популяциями, биоценозами и факторами среды. Теоретическая основа – закон единства организма и среды Вернадского – жизнь развивается в результате постоянного обмена веществом и информацией на базе потоков энергии в совокупном единстве среды и населяющих ее организмов. Освещенность - для фотосинтеза 380-710нм. 34 % отражается облаками, 19% поглощается атмосферой, 47% достигает Земли. Температура – пределы точка замерзания и до 40-45 ˚С, скорость ферментативных реакций в этих пределах удваивается на каждые 10 С. гомойотермные – теплокровные, поддерживают температуру тела. Имеют переменную температуру тела и относятся к группе пойкилотермных – холоднокровных. Порог развития – температура, при которой у пойкилотермных организмов восстанавливается обмен веществ после холодового угнетения. Температурные группы растений – нехолодостойкие, неморозостойкие, морозостойкие, нежаростойкие, жаростойкие, пирофиты. Температурные адаптации растений – биохимические – накопление анитфризов, физиологические – транспирация, морфологичесие – опушение, расположение листьев, отношение поверхность, объем. Влажность – давление пара над раствором, давление пара над чистой водой. Адаптации растений к недостатку воды – пойкилогидрические, гомойогидрические. Группы гомойогидрических – гидатофиты ряска, гидрофиты – назмно-водные - кубышка, гигрофиты – кислица, мезофиты – луговые травы, склерофиты – с толстой кутикулой – ковыль, суккуленты – сочные с водозапасающей паренхимой. Гетеротермные (суслики, ежи, летучие мыши, медведи). В активном состоянии у этих животных поддерживается постоянная относительно высокая температура тела. В зимнее время они впадают в спячку или глубокий сон, и температура тела у них в это время мало отличается от внешней. Уровень обмена веществ снижается.

147

62. Взаимодействие экологии, почвоведения и агрохимии. Экологическое почвоведение. Экологические основы агрохимии.

(Экология почв или интегральная экология почв - междисциплинарное научное направление, изучающее весь спектр участия различных факторов почвообразования в формировании, динамике и эволюции почв и всю совокупность экологических функций почв с ответным воздействием на почвообразователи и поддержанием их функционирования и развития. А также разрабатываемое на их основе учение о сохранении почв. Основные направления и задачи экологии почв - работы по биогеоценотическим и глобальным функциям почв, имеющие принципиальное значение не только для дальнейшего развития науки о почве, но и для всесторонней разработки учения о взаимосвязи и динамике приповерхностных геосфер, а также создания научно обоснованной системы рационального использования и охраны природных ресурсов. Анализ функций почв в экосистемах и биосфере позволяет поставить исследования взаимодействий почв и факторов среды в качестве особой проблемы и вести ее разработку на уровне изучения не только прямой, но и обратной связи. Исследуя общую экологическую роль почв и различные виды их влияния на атмосферные, гидрологические, биотические и другие компоненты экосистем биосферы, мы тем самым изучаем ответное воздействие самой почвы на факторы почвообразования. Однако проблема экологических функций почв шире и глубже анализа обратной связи в системе почва—факторы. Данная проблема охватывает дополнительный ряд не менее важных вопросов, касающихся, в частности, изучения внутренней жизни и функционирования почвенных систем в их взаимодействии со всеми звеньями природных комплексов. Почва оказалась планетарным узлом экологических связей с многочисленными глобальными функциями, деградация которых чревата для цивилизации самыми тяжелыми последствиями. Научные основы сохранения почв возникли как продолжение учения о экологических функциях почв, но имеют существенное отличие от охраны почв в традиционном ее понимании. Это отличие заключается в более широком функционально-экологическом подходе к проблеме сбережения почв и почвенного покрова. Если раньше охрана почв сводилась в основном к защите их от факторов разрушения (эрозии, дефляции, химического загрязнения и др.), то теперь она рассматривается лишь как важнейшая часть полнокомплексной системы сбережения почв в полном объеме - защита почв от прямого уничтожения и полной гибели, что предполагает ограничение отведения новых земель для строительства различных объектов, а также разрушающих военных испытаний и свалок, ограничение и запрещение открытых разработок полезных ископаемых, максимальное использование для промышленных и других объектов ранее выведенных их биосферы

148

территорий и их участков. Другие блоки почвосохранения включают в себя защиту освоенных почв от качественной деградации, предотвращение негативных структурно-функциональных изменений освоенных почв, восстановление деградированных освоенных почв, сохранение и восстановление естественных почв как компонента биосферы. Указанный почвоохранный функционально-экологический биосферный подход, вытекающий из учения о почвенных экофункциях, знаменует собой важный прорыв в интеграции не только концептуального, но и прикладного знания и заставляет по-новому оценить всю природоохранную проблематику, поскольку в ней в связи с реализацией данного подхода появилась в качестве важнейшей составляющей особая охрана и Красная книга почв. Отставание развития особой охраны почв обусловлено рядом причин и прежде всего преобладанием утилитарной трактовки почвы в основном как объекта сельскохозяйственного процесса, главное назначение которого — получение урожая за счет обеспечения растений почвенными питательными веществами. Но начиная с 70-х годов такое понимание почвы не могло считаться удовлетворительным в связи с выходом публикаций по биогеоценотическим и биосферным функциям почв. Экофункции почв - Регулирование биогеохимических циклов элементов в биосфере. Регулирование состава атмосферы и гидросферы. Регулирование биосферных процессов. Накопление специфического органического вещества и энергии. Сохранение биологического разнообразия.

63. Глобальные проблемы воздушного загрязнения и озоновых дыр: современное состояние, причины, прогноз, средства предотвращения.

Проблема озона в атмосфере имеет два связанных с человеческой деятельностью аспекта: разрушение в верхних слоях (“озоновый экран”) и увеличение концентрации в околоземном пространстве. Озон в верхних слоях атмосферы (“Озоновый экран”). Озоновый экран располагается у полюсов на высотах 9-30 км, у экватора – на 18-32 км. Концентрация озона в нем равна 0,01-0,06 мг/м3. Если содержащийся в границах экрана озон выделить в чистом виде, то слой его составит 3 – 5 мм. Содержание озона выражается в сантиметрах (0,3 – 0,5) или в единицах Допсона (миллиметры, увеличенные в 100 раз – 300-500 ед.). Озон в верхних слоях атмосферы образуется в результате распада молекулы кислорода (О2) под влиянием ультрафиолетовых лучей на два атома кислорода. Одновременно идет противоположный процесс распада молекул озона и образования кислорода. Условием для протекания реакций является наличие ультрафиолетовых лучей и преобразование их в инфракрасные тепловые. Таковы основные механизмы существования озонового экрана и поглощения ультрафиолетовых лучей.

149

Озон поглощает лучи с длиной волны 200-320 нм. Часть из них, как и более длинные, доходят до Земли. При этом лучи длиной 200-400 нм выделяют в категорию биологически активных ультрафиолетовых (БАУ). “Озоновые дыры” представляют собой протяженные области пониженного (до 50 %) содержания озона в озоновом слое атмосферы, поглощающем ультрафиолетовое излучение, гибельное для живых организмов, формирующиеся в результате антропогенного химического загрязнения атмосферы хлор- и фторуглеводородами. В последние годы наблюдается тенденция уменьшения содержания озона в верхних слоях атмосферы. В средних и высоких широтах северного полушария такое уменьшение составило около 3% (по другим сведениям 2–10%). Есть данные, что уменьшение содержания озона на 1% ведет к увеличению заболеваемости раком кожи на 5-7%. Для европейской части России это составляет около 6- 6,5 тыс. человек в год. Наиболее значительная потеря озона регистрируется над Антарктидой. Здесь содержание его в озоновом слое за последние 30 лет уменьшилось на 40-50%. Пространство, в пределах которого регистрируется уменьшение концентрации озона, получило название “озоновой дыры”. Размер “дыры” с пониженной концентрацией озона возрастает примерно на 4% в год. В настоящее время она вышла за пределы континента и по размерам превышает площадь США. Несколько меньших размеров “дыра” характерна для Арктики. Учащается также появление “блуждающих дыр” площадью от 10 до 100 тыс. км2 в других регионах, где потери озона достигают 20-40% от нормального уровня. Причины возникновения “озоновых дыр” до конца не ясны. Впервые они обнаружены в начале 80-х гг. настоящего столетия, и короткий период наблюдений не дает достаточных оснований для каких-либо категоричных выводов о причинах изменений концентрации озона. Основным антропогенным фактором, разрушающим озон, в настоящее время считают фреоны (хладоны). Эти хлорфторуглероды, кипящие при комнатной температуре, широко используются как газы-носители (пропилленты) в различного рода баллончиках, холодильных установках и т. п. Для широкого использования в качестве пропиллентов фреоны избраны как весьма стойкие (инертные) газы. Однако чисто технический подход к их оценке только по одному свойству привел к непредвиденному отрицательному эффекту. Оказалось, что именно благодаря высокой устойчивости (живут более 100 лет) фреоны оказались способными достигать озонового слоя, в агрессивной среде которого из них высвобождается хлор. Каждый атом хлора как катализатор способен разрушить до 100 тысяч атомов озона. Принимаются меры к уменьшению, а в дальнейшем и к прекращению производства фреонов. Так, Монреальским протоколом, подписанным в 80-х гг., к 2000 г. многие государства взяли обязательство сократить производство фреонов на

150

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]