
- •Современные представления о возникновении и эволюции микробной жизни на Земле
- •2. Где и до какой глубины осуществляется микробиологические процессы в земной коре
- •3. Основные механизмы трансформации химических элементов микроорганизмами
- •4. Анаэробные и аэробные формы жизни. Точка и эффект Пастера
- •5. Как и где микроорганизмы образуют н2 в почве? Что происходит далее с н2 в почве? Что такое водородные бактерии?
- •6. Важнейшие звенья микробиологического цикла углерода в почве, Основные группы микроорганизмов, осуществляющих их.
- •Ассимиляция со2
- •Синтез орг. Вещества
- •6. Основные способы синтеза «органического» углерода на Земле, роль микроорганизмов.
- •8. Как микроорганизмы используют целлюлозу? Основные группы этих
- •9. Какие микроорганизмы и как используют лигнин?
- •10.Как и почему микроорганизмы образуют метан (сн4) в почве? Можно ли отличить сн4 «геологический» от «почвенного»?
- •11. Что происходит с метаном в почве? Почва как природный «противогаз».
- •12. Важнейшие звенья микробиологического цикла азота в почве.
- •1.Окисление аммиака до нитрит-аниона
- •2.Окисление нитрит-аниона до нитрат-аниона
- •Выделение закиси азота эукариотами
- •13. Диазотрофия; роль в азотном балансе почв. Нитрогеназы, их особенности. Основные группы микроорганизмов-диазотрофов.
- •14. Как образуются нитраты в почве? Механизмы и организмы.
- •15. В чем сходство и различие терминов денитрификация-нитратредукция-нитратное дыхание? Механизмы этих процессов и организмы.
- •16. Как можно регулировать активность процессов азотного цикла в почве?
- •17. Биогеохимия фосфора, роль микроорганизмов в разрушении фосфатов. Микориза.
- •18. Микробиологическая мелиорация солончаков.
- •19. Важнейшие звенья цикла серы в почве. Роль микроорганизмов в судьбе Черного моря.
- •Бактерии
- •24. Окисление микроорганизмами сульфидов меди, молибдена, сурьмы. Современные биотехнологии с участием микроорганизмов.
- •1) Увеличение нефтеотдачи пластов
- •2) Очистка природных вод и почв от нефтяных загрязнений
- •3) Сульфатредукция
- •31. Современные представления о роли микроорганизмов образовании и
- •32. Роль микроорганизмов в образовании и деградации гумусовых веществ.
- •33. Учение о корах выветривания б.Б.Полынова и в.А.Ковды. Роль микроорганизмов в разрушении алюмосиликатов в природе. "Силикатные бактерии", кремниевый модуль.
- •34. Трансформация состава нефти в почвах, роль микроорганизмов в трансформации нефти.
- •35. Основные теории образования нефти.
- •36. Микробиологические методы повышения нефтеотдачи пластов.
- •37. Влияние микроорганизмов на состав современной атмосферы Земли, их роль в "парниковом эффекте" и в образовании "озоновых дыр".
- •38. Микробиология стратифицированных водоемов. Первичная и вторичная биологическая продукция.
- •39. Микробиология морей и океанов. Микробиология "черных курильщиков". Вторая биосфера.
- •40. Микробиологические методы очистки коммунальных и промышленных сточных вод.
4. Анаэробные и аэробные формы жизни. Точка и эффект Пастера
Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.
Анаэробы — обширная группа организмов, как микро-, так и макроуровня:
анаэробные микроорганизмы — обширная группа прокариотов и некоторые простейшие.
макроорганизмы — грибы, водоросли, растения и некоторые животные (класс фораминиферы, большинство гельминтов (класс сосальщики, ленточные черви, круглые черви (например, аскарида).
Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Анаэробное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора электронов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.
Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода — наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O2−),перекиси водорода(H2O2), синглетного кислорода(O.), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:
супероксиддисмутаза, элиминирующая супероксид-анион(O2−) без энергетической выгоды для организма
каталаза, элиминирующая перекись водорода(H2O2) без энергетической выгоды для организма
цитохром- фермент, отвечающий за перенос электронов от NAD•H к O2. Этот процесс обеспечивает существенную энергетическую выгоду организму.
Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы — один или два, облигатные анаэробы не содержат цитохромов.
Анаэробные микроорганизмы могут активно воздействовать на среду, создавая подходящий окислительно-восстановительный потенциал среды (например, Clostridium perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH, ограждая себя восстановительным барьером, другие — аэротолерантные — в процессе жизнедеятельности продуцируют перекись водорода, повышая pH.
Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.
Точка Пастера - однопроцентный уровень содержания кислорода (имеется в виду I % от его современного количества) это тот критический минимум, ниже которого аэробный метаболизм принципиально невозможен; однако для жизнедеятельности макроскопических животных кислорода необходимо существенно больше.
Эффект пастера. Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например, глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-видимому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление Piи АДФ, генерация АТФ а также регенерирование НАД+, окисленного из восстановленного НАДН.