- •Начертательная геометрия
- •Введение
- •Раздел I. Начертательная геометрия обозначения и символы
- •1. Методы проецирования
- •1.1. Центральное проецирование
- •1.2. Параллельное проецирование
- •Основные свойства параллельного проецирования:
- •1.3. Прямоугольное (ортогональное) проецирование
- •1.4. Модели координатных плоскостей.
- •1.4.1. Пространственная модель координатных плоскостей проекций
- •1.4.2. Плоскостная модель координатных плоскостей проекций (эпюр)
- •2 Ортогональные проекции точки
- •Вопросы для самоконтроля
- •9. Точка а (0,30,0) принадлежит …
- •10. Точка а (0,0,30) принадлежит …
- •3. Ортогональные проекции прямой
- •3.1. Прямые общего положения
- •3.2. Прямые частного положения.
- •3.2.1. Прямые уровня
- •3.2.2. Проецирующие прямые
- •3.2.3. Прямые, принадлежащие плоскости проекций
- •3.3. Взаимное положение прямых
- •3.4. Определение натуральной величины отрезка методом прямоугольного треугольника
- •3.5. Теорема о прямом угле
- •Вопросы для самоконтроля
- •4. Ортогональные проекции плоскости
- •4.1. Способы задания плоскостей
- •4.2. Плоскости общего положения
- •4.3. Плоскости частного положения
- •4.3.1. Плоскости уровня
- •4.3.2. Проецирующие плоскости
- •4.4. Принадлежность прямой и точки плоскости
- •4.5. Главные линии плоскости
- •4.5.1. Линии уровня плоскости
- •4.5.2. Линии наибольшего наклона плоскости
- •Вопросы для самоконтроля
- •5.3.2. Пересечение двух плоскостей, когда одна из них частного положения
- •5.3.4. Пересечение прямой общего положения с плоскостью общего положения
- •Вопросы для самоконтроля
- •6. Способы преобразования чертежа
- •6.1. Способ перемены (замены) плоскостей проекций
- •6.2. Способ вращения вокруг оси, перпендикулярной плоскости проекций
- •Вопросы для самоконтроля
- •7. Кривые линии
- •8. Поверхности
- •8.1. Основные понятия и определения
- •8.2. Ортогональные проекции поверхностей
- •8.3. Принадлежность точки поверхности
- •8.4. Пересечение поверхности плоскостью частного положения
- •8.4.1. Пересечение многогранников плоскостью частного положения
- •8.4.2. Пересечение поверхностей вращения плоскостью частного положения
- •Вопросы для самоконтроля
- •9. Пересечение поверхностей
- •9.1 Общие сведения о пересечении поверхностей
- •9.2. Построение линии пересечения поверхностей методом секущих плоскостей
- •9.3. Построение линии пересечения поверхностей, когда одна из них проецирующая
- •9.4. Частные случаи пересечения поверхностей
- •Вопросы для самоконтроля
- •10. Развертки поверхностей
- •10.1 Общие сведения о развертках
- •Свойства разверток поверхностей
- •10.2. Развертки гранных поверхностей
- •10.2.1. Способ триангуляции (треугольников)
- •10.2.1. Способ нормального сечения
- •10.2.1. Способ раскатки
- •10.2. Развертки цилиндрических и конических поверхностей
- •10.2.1. Развертка прямого кругового цилиндра
- •10.2.2. Развертка прямого кругового конуса
- •Вопросы для самоконтроля
- •11. Аксонометрические проекции
- •11.1. Прямоугольная изометрическая проекция
- •11.2. Прямоугольная диметрическая проекция
- •11.3. Косоугольная фронтальная диметрическая проекция
- •Вопросы для самоконтроля
9.4. Частные случаи пересечения поверхностей
Рассмотрим некоторые частные случаи пересечения поверхностей второго порядка (цилиндр, конус, сфера).
Теорема 1. Если две поверхности 2-го порядка пересекаются по одной плоской кривой, то они пересекаются и еще по одной плоской кривой.
На рис. 9.5 показаны фронтальные проекции сферы и цилиндра. Результатом их пересечения являются две кривые второго порядка l и m, а именно – окружности.
Рис. 9.5
Теорема 2. Если две поверхности 2-го порядка имеют касание в двух точках, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания.
На рис. 9.6 изображено пересечение сферы и эллиптического цилиндра (фронтальная и профильная проекции). Точки А и В – точки
Рис. 9.6
касания поверхностей. Линия пересечения распадается на две кривые второго порядка 1-2 и 3-4 –эллипсы.
Теорема 3. Если две поверхности 2-го порядка описаны около третьей поверхности второго прядка или вписаны в нее, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания.
На рис. 9.7 показано пересечение двух круговых цилиндров одного диаметра – описанных около сферы (фронтальные проекции). Точки А и В – точки касания поверхностей. Линия пересечения распадается на две кривые второго порядка l и m –эллипсы, плоскости которых проходят через прямую, соединяющую точки А и В.
Рис. 9.7
Вопросы для самоконтроля
Что является результатом пересечения поверхностей?
Общий алгоритм построения линии пересечения поверхностей.
Каким образом выбирают секущие плоскости при использовании метода секущих плоскостей?
В чем заключается сущность построения линии пересечения поверхностей, когда одна из них проецирующая?
Какие вы знаете частные случаи пересечения поверхностей?
6. Какой способ следует использовать для построения линии пересечения (Л. П.) данных поверхностей? |
|
|
- способ секущих плоскостей; построение линии пересечения, когда одна из них проецирующая; - одну их теорем частных случаев пересечения поверхностей.
|
7. Какой способ следует использовать для построения линии пересечения (Л. П.) данных поверхностей? |
|
|
- способ секущих плоскостей; построение линии пересечения, когда одна из них проецирующая; - одну их теорем частных случаев пересечения поверхностей.
|
8. Какой способ следует использовать для построения линии пересечения (Л. П.) данных поверхностей? |
|
|
способ секущих плоскостей; - построение линии пересечения, когда одна из них проецирующая; - одну их теорем частных случаев пересечения поверхностей.
|
ЗАНЯТИЕ 8
