- •Начертательная геометрия
- •Введение
- •Раздел I. Начертательная геометрия обозначения и символы
- •1. Методы проецирования
- •1.1. Центральное проецирование
- •1.2. Параллельное проецирование
- •Основные свойства параллельного проецирования:
- •1.3. Прямоугольное (ортогональное) проецирование
- •1.4. Модели координатных плоскостей.
- •1.4.1. Пространственная модель координатных плоскостей проекций
- •1.4.2. Плоскостная модель координатных плоскостей проекций (эпюр)
- •2 Ортогональные проекции точки
- •Вопросы для самоконтроля
- •9. Точка а (0,30,0) принадлежит …
- •10. Точка а (0,0,30) принадлежит …
- •3. Ортогональные проекции прямой
- •3.1. Прямые общего положения
- •3.2. Прямые частного положения.
- •3.2.1. Прямые уровня
- •3.2.2. Проецирующие прямые
- •3.2.3. Прямые, принадлежащие плоскости проекций
- •3.3. Взаимное положение прямых
- •3.4. Определение натуральной величины отрезка методом прямоугольного треугольника
- •3.5. Теорема о прямом угле
- •Вопросы для самоконтроля
- •4. Ортогональные проекции плоскости
- •4.1. Способы задания плоскостей
- •4.2. Плоскости общего положения
- •4.3. Плоскости частного положения
- •4.3.1. Плоскости уровня
- •4.3.2. Проецирующие плоскости
- •4.4. Принадлежность прямой и точки плоскости
- •4.5. Главные линии плоскости
- •4.5.1. Линии уровня плоскости
- •4.5.2. Линии наибольшего наклона плоскости
- •Вопросы для самоконтроля
- •5.3.2. Пересечение двух плоскостей, когда одна из них частного положения
- •5.3.4. Пересечение прямой общего положения с плоскостью общего положения
- •Вопросы для самоконтроля
- •6. Способы преобразования чертежа
- •6.1. Способ перемены (замены) плоскостей проекций
- •6.2. Способ вращения вокруг оси, перпендикулярной плоскости проекций
- •Вопросы для самоконтроля
- •7. Кривые линии
- •8. Поверхности
- •8.1. Основные понятия и определения
- •8.2. Ортогональные проекции поверхностей
- •8.3. Принадлежность точки поверхности
- •8.4. Пересечение поверхности плоскостью частного положения
- •8.4.1. Пересечение многогранников плоскостью частного положения
- •8.4.2. Пересечение поверхностей вращения плоскостью частного положения
- •Вопросы для самоконтроля
- •9. Пересечение поверхностей
- •9.1 Общие сведения о пересечении поверхностей
- •9.2. Построение линии пересечения поверхностей методом секущих плоскостей
- •9.3. Построение линии пересечения поверхностей, когда одна из них проецирующая
- •9.4. Частные случаи пересечения поверхностей
- •Вопросы для самоконтроля
- •10. Развертки поверхностей
- •10.1 Общие сведения о развертках
- •Свойства разверток поверхностей
- •10.2. Развертки гранных поверхностей
- •10.2.1. Способ триангуляции (треугольников)
- •10.2.1. Способ нормального сечения
- •10.2.1. Способ раскатки
- •10.2. Развертки цилиндрических и конических поверхностей
- •10.2.1. Развертка прямого кругового цилиндра
- •10.2.2. Развертка прямого кругового конуса
- •Вопросы для самоконтроля
- •11. Аксонометрические проекции
- •11.1. Прямоугольная изометрическая проекция
- •11.2. Прямоугольная диметрическая проекция
- •11.3. Косоугольная фронтальная диметрическая проекция
- •Вопросы для самоконтроля
6.2. Способ вращения вокруг оси, перпендикулярной плоскости проекций
Сущность метода: плоскости проекций остаются неподвижными, а геометрический объект меняет свое положение. При вращении каждая точка геометрической фигуры перемещается в плоскости, перпендикулярной к оси вращения. Траектория движения точек представляет собой окружность.
Решение четырех основных задач методом вращения вокруг оси, перпендикулярной плоскости проекций:
Задача 1.
Н
а
рис. 6.6 задан отрезок общего положения
АВ.
Обозначим i1
- ось вращения. Пусть i1
V
и проходит через точку В.
Тогда при вращении вокруг оси В
останется на месте, А
будет перемещаться в плоскости,
перпендикулярной i1,
а следовательно параллельной V.
Таким образом, окружность, по которой
движется точка, на плоскость V
проецируется без искажения, а на плоскость
Н
– в отрезок, параллельный оси х.
Для того, чтобы отрезок АВ занял положение уровня, переместим А по окружности так, чтобы В″А1″ ║ х. Положение А1′ будет находится на пересечении линии связи, проведенной от А1″ и горизонтальной прямой от А′ (проекции окружности).
Таким образом, отрезок АВ занял положение горизонтали (А1″В″ - натуральная величина АВ, угол между А1′В′ и х является действительной величиной угла наклона АВ к плоскости V).
Задача 2.
Н
а
рис. 6.7 задан отрезок общего положения
АВ.
Для того, чтобы АВ
занял проецирующее положение, его
сначала нужно перевести в положение
уровня. Выполнив для этого необходимые
действия (см. задачу 1), введем еще одну
ось вращения i2
Н.
Переместим А1′
и В′
по окружности так, чтобы А2′
В2′
х. Положение А2″
и В2″
будет находится на пересечении линии
связи, проведенной от А2′
В2′
и горизонтальной прямой от В″А1″
(проекции
окружности, по которой двигались А1′
и В′).
Таким образом, отрезок АВ занял фронтально-проецирующее положение.
Задача 3.
На рис. 6.8 задана плоскость общего положения АВС. Для того чтобы она заняла проецирующее положение, зададим какую-либо линию уровня плоскости, например горизонталь плоскости h. Пусть ось вращения i1 Н и проходит через точку С. Переведем h во фронтально-проецирующее положение путем вращения вокруг оси i1. При этом она повернется на угол φ. На такой же угол вращают остальные точки плоскости А, В, С. Таким образом, получим фронтально-проецируюшую плоскость А1В1С (угол между В1″С″А1″ и х является действительной величиной угла наклона АВС к плоскости Н).
Задача 4.
На рис. 6.9 задана плоскость общего положения АВС. Для того чтобы она заняла положение плоскости уровня, ее сначала нужно перевести в проецирующее положение. Выполнив для этого необходимые действия (см. задачу 3), введем еще одну ось вращения i2 V, которая проходит через точку В. Провращаем плоскость А1В1С так, чтобы А2″В1″С2″ ║ x. Таким образом, плоскость займет положение горизонтальной плоскости (А2′В1′С2′ - натуральная величина АВС).
