- •Оглавление
- •1. Введение
- •2. Правила работы в химической лаборатории. Техника безопасности. Требования к оформлению отчетов по лабораторным работам
- •Первая помощь при несчастных случаях
- •Требования к оформлению отчетов по лабораторным работам
- •3. Тема 1. Растворы. Классификация растворов. Способы выражения состава растворов. Приготовление растворов: по точной навеске, из фиксанала. Разбавление и концентрирование растворов
- •Приготовление стандартных растворов
- •Обучающие задачи
- •При растворении p2o5 в растворе фосфорной кислоты образуется дополнительное ее количество в результате химической реакции:
- •Химическая посуда и правила ее использования
- •Лабораторная работа № 1. Приготовление разбавленного раствора хлорида натрия из его концентрированного раствора путем разбавления. Контроль состава раствора методом денсиметрии
- •Последовательность выполнения работы
- •Дополнительное задание
- •Задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •4. Тема 2. Введение в объемный (титриметрический) анализ. Основные понятия и определения. Классификация методов объемного анализа. Метод нейтрализации. Индикаторы в методе нейтрализации
- •Классификация методов объемного анализа.
- •Метод нейтрализации.
- •Индикаторы в методе кислотно-основного титрования.
- •Лабораторная работа №2
- •2.1 Алкалиметрическое определение серной кислоты в растворе с индикаторами фенолфталеином и метилоранжем
- •Последовательность выполнения работы.
- •Внимание! Если бюретка течет – обратитесь к инженеру или преподавателю
- •Дополнительное задание
- •Решение задач приложить к отчету.
- •2.2 Лабораторная работа: Ацидиметрическое определение карбоната натрия в водном растворе с индикаторами фенолфталеином и метилоранжем
- •Титриметрические реакции:
- •Последовательность выполнения работы.
- •Задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •5. Тема 3. Равновесия в растворах слабых электролитов, кислых и гидролизующихся солей
- •Расчёт концентраций ионов и недиссоциированных молекул в растворах
- •Диссоциация слабого основания. Диссоциация воды. Ионное произведение воды Кw.
- •Обучающие задачи
- •Вычисление рН в водных растворах кислот и оснований
- •Гидролиз солей
- •Методика расчёта pH в растворах средних гидролизующихся солей
- •Обучающие задачи
- •6. Тема 4. Теория кислот и оснований Аррениуса и Бренстеда-Лоури. Сопряженные кислотно-основные пары. Буферные системы
- •Особенности равновесий в буферных растворах и механизм буферного действия.
- •Расчёт рН буферного раствора и область его буферного действия.
- •Способы приготовления буферных растворов с заданным значением рН.
- •Буферная ёмкость – мера устойчивости буферного раствора.
- •Обучающие задачи
- •Лабораторная работа №3 Приготовление буферного раствора заданного состава и исследование его свойств
- •Порядок выполнения работы
- •Задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •7. Тема 5. Гетерогенные равновесия и процессы
- •6.1.1.Расчет молярной растворимости малорастворимых соединений в воде
- •7.1.2 Условия смещения ионного гетерогенного равновесия
- •Обучающие задачи
- •Лабораторная работа № 4
- •4.1. Изучение свойств растворов гидролизующихся солей
- •Порядок выполнения работы
- •При оформлении результатов лабораторной работы необходимо:
- •Решение задач приложить к отчету.
- •4.2.Лабораторная работа: Изучение равновесий осадок малорастворимого электролита – его насыщенный раствор
- •Вопросы и задачи для самостоятельного решения.
- •Решение задач приложить к отчету.
- •8. Тема 6. Окислительно-восстановительные реакции и процессы. Окислительно-восстановительное титрование. Индикаторы в методе окислительно-восстановительного титрования
- •Лабораторная работа № 5 Окислительно-восстановительные реакции в растворах. Перманганатометрическое определение пероксида водорода.
- •5.1. Окислительно-восстановительные реакции Окислительно-восстановительные реакции с участием простых веществ
- •Окислительные свойства перманганата калия (кMnO4) в кислой, нейтральной и щелочной средах
- •Окислительно-восстановительные свойства пероксида водорода (н2о2)
- •Окислительные свойства бихромата калия (k2Cr2o7)
- •Методы окисления - восстановления в объемном анализе Титрование перманганатом (перманганатометрия)
- •Определение пероксида водорода
- •Порядок выполнения работы.
- •Примечание
- •Задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •9. Тема 7. Реакции комплексообразования в методах объемного анализа. Комплексоны. Комплексонометрия. Индикаторы в методе комплексонометрии, требования к ним
- •Определение жесткости воды (комплексонометрия)
- •Обучающие задачи
- •Лабораторная работа №6 Комплексонометрическое определение общей жесткости воды
- •6.1 Определение общей жесткости водопроводной воды Последовательность выполнения работы
- •6.2 Определение временной жесткости водопроводной воды Последовательность выполнения работы
- •6.3 Определение общей и временной жесткости минеральной воды Последовательность выполнения работы
- •Вопросы и задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •10. Тема 8. Физико-химические основы поверхностных явлений. Сорбция и ее виды. Поверхностно-активные вещества.
- •Изучение адсорбции из растворов на твердом адсорбенте.
- •Лабораторная работа № 7 Изучение адсорбции уксусной кислоты из водного раствора на активированном угле.
- •Порядок выполнения работы.
- •Вопросы и задачи для самостоятельного решения
- •Вопросы и задачи приложить к отчету.
- •11. Тема 9. Физикохимия дисперсных систем. Классификация дисперсных систем. Лиофобные коллоидные системы (золи), их получение, свойства. Коагуляция золей электролитами. Правило Шульце-Гарди.
- •Лабораторная работа №8. Экспериментальная проверка правила Шульце-Гарди
- •Порядок выполнения работы
- •Вопросы и задачи для самостоятельного решения
- •Решение задач приложить к отчету.
- •Экспериментальная часть
Классификация методов объемного анализа.
В зависимости от типа химической реакции, лежащей в основе титрования, различают следующие методы объемного анализа:
а) метод нейтрализации – в качестве стандартных растворов используют растворы сильных кислот и оснований (щелочей) – метод ацидиметрического или алкалиметрического титрования соответственно;
б) метод окисления – восстановления – в качестве стандартных используют растворы окислителей и/или восстановителей; методы окислительно-восстановительного титрования называют по названию реагента: метод перманганатометрии, в котором стандартным раствором реагента является раствор перманганата калия; дихроматометрии – стандартный раствор дихромата калия и др.;
в) метод осаждения;
г) метод комплексообразования, частным случаем которого является метод комплексонометрии.
По способу выполнения титрования различают методы прямого и обратного титрования, а также метод титрования заместителя:
a) метод прямого титрования состоит в непосредственном титровании аликвотной части исследуемого раствора, содержащего определяемый ион, стандартным раствором реагента. Например, титрование сильных кислот, щелочей, гидролизующихся солей (карбоната натрия) в присутствии кислотно-основных индикаторов; титрование соли железа (II) раствором перманганата калия и др. В точке конца титрования выполняется закон эквивалентов, который лежит в основе всех расчетов: определяемое вещество (ион), содержащееся в аликвотной части, и реагент, содержащийся в израсходованном на титрование объеме стандартного раствора, прореагировали в количествах, равных количествам веществ их эквивалентов:
Математическое выражение закона эквивалентов:
(4.1)
где
-
молярные концентрации эквивалентов
стандартного раствора реагента и
определяемого вещества Х, [моль/дм3];
VR
– объем стандартного раствора реагента,
израсходованного на титрование (бюретка),
[см3]; Vх
– аликвотная часть исследуемого
раствора, [см3].
б) метод обратного титрования используется:
– когда вещество, содержание которого следует определить, реагирует с реагентом стандартного раствора, однако реакция при этом не сопровождается резким изменением концентрации в точке эквивалентности;
– когда реакция протекает медленно;
– когда не удается подобрать индикатор, резко меняющего свою окраску в точке конца титрования;
– когда определяемое вещество является летучим.
Суть метода обратного титрования сводится к следующему: к аликвотной части исследуемого раствора приливают заведомо известный избыток (точно измеренный объем) одного из стандартных растворов, затем непрореагировавшую его часть титруют стандартным раствором другого реагента.
Например, определение содержания карбоната кальция в известняке выполняют методом ацидиметрического титрования. При этом реакция углекислого кальция с соляной кислотой при постепенном ее прибавлении (в процессе прямого титрования) протекает медленно, поэтому прямое титрование в данном случае неприемлемо. Используют метод обратного титрования: к навеске карбоната кальция прибавляют заведомый избыток стандартного раствора соляной кислоты, нагревают до полного растворения навески карбоната кальция, а затем титруют оставшуюся, непрореагировавшую часть (избыток) соляной кислоты стандартным раствором щелочи. Зная общее количество взятой для анализа соляной кислоты, а также ее остаток, находят количество кислоты, затраченное на реакцию с карбонатом кальция.
Другой пример. Для определения содержания иона аммония в аммонийных солях исследуемый раствор обрабатывают заведомым избытком стандартного раствора щелочи и кипятят для удаления аммиака. Затем остаток щелочи титруют стандартным раствором соляной кислоты.
Расчеты при использовании метода обратного титрования выполняют по формуле:
(4.2)
где
–
молярная концентрация эквивалентов
первого стандартного раствора реагента
(раствор щелочи), [моль/дм3];
VR1
– объем первого стандартного раствор;
, VR2
Vх–
объем стандартного раствора соляной
кислоты и раствора определяемого
вещества соответственно, [см3].
в) титрование заместителя. Этот метод используется тогда, когда невозможно применить методы прямого или обратного титрования. В этих случаях определяемый ион при помощи стехиометрической химической реакции переводят в такое химическое соединение, которое можно непосредственно титровать стандартным раствором реагента. В качестве примера можно привести йодометрическое определение меди.
