Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория сигналов, лекции.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
5.32 Mб
Скачать

Численно погрешность приближения характеризуется нормой

(1.3.14)

Заметим, что пространство является ортогональным дополнением пространства , т.к. любой вектор из может быть представлен единственным образом суммой вектора из и вектора из :

. (1.3.15)

Поэтому часто рассматривают как сумму подпространств и . Единственным общим элементом в них является нулевой вектор. Все эти понятия графически объясняются на рис. 1.7.

Рассмотрим пример. Пусть - пространство из , , натянутое на функции . Нужно в этом пространстве найти наилучшее приближение для прямоугольного импульса:

.

Можно записать

Следовательно, матрица имеет вид

,

Соответственно, взаимный базис есть:

,

.

Следовательно,

есть представление в . Приближение иллюстрируется на рис. 1.8.

Рис. 1.8. Аппроксимация прямоугольного

импульса с помощью .

1.3.2. Полные ортонормальные системы

Рассмотрим вопрос о сходимости представления произвольного сигнала в конечномерном пространстве . Будем предполагать, что число измерений подпространства можно произвольно увеличивать. (При этом вопросы оптимальности подпространств, натянутых на базисные функции, рассмотрены не будут).

Пространство - полное сепарабельное пространство, т.е. выбирая достаточно большим, можно получить сколь угодно близкую аппроксимацию любого

, (1.3.16)

где - бесконечное множество ортонормированных функций, для которых

. (1.3.17)

Соотношение (1.70) есть неравенство Бесселя, оно показывает, что сумма квадратов коэффициентов разложения ограничена для любого .

Неравенство Бесселя вытекает из следующих соображений:

,

где .

При

.

Отсюда же следует, что - последовательность Коши, сходящаяся в пространстве к некоторой точке. Если - полная ортонормированная система, то сходится к . Ортонормированная система является полной, если не существует дополнительных, отличных от нуля ортогональных векторов, которые можно было бы добавить к системе.

Заметим, что произвольная бесконечная ортонормальная система не обязательно полная. В частности, система функций из теоремы Котельникова

ортонормальная, но не полная в , т.к. функции с частотой больше не принадлежат подпространству, натянутому на эту систему. Не нужно путать полноту метрического пространства и полноту ортонормальной системы.

Для полной ортонормальной системы неравенство Бесселя превращается в равенство

для любого .

Таким образом, выбирая достаточно большим для , можно норму погрешности сделать сколь угодно малой. При этом, правда, для разных будет разное . Тем не менее, такое представление очень широко используется, так как:

1. Скалярное произведение в и совпадают;

2. Известно много ортонормальных систем;

3. Если известна проекция на , то для нахождения проекции на не нужно производить все вычисления заново, а достаточно определить (благодаря самосопряженности базиса), т.е. каждый -ый член разложения – это частная проекция на одномерное пространство.

При определении базисных функций для представления сигнала часто используют понятие нормы с весом. При оценке погрешности представления бывает желательно обратить внимание на какой-либо участок области определения функции. Для этого используют интеграл

, (1.3.18)

где - некоторая неотрицательная функция, определенная на отрезке , вместо нормы .