- •О.А. Кишкинова, и.В. Кутликова, т.В. Левченкова
- •Введение
- •Требования к оформлению контрольной работы
- •2. Прямая на плоскости Общее уравнение прямой
- •Уравнение прямой с угловым коэффициентом
- •Уравнение прямой, проходящей через заданную точку м(х0;у0) в заданном направлении
- •Уравнение прямой в отрезках
- •Уравнение прямой, проходящей через две заданные точки м1(x1;y1) и м2(x2;y2)
- •Угол между двумя прямыми
- •Условие параллельности прямых
- •Условие перпендикулярности прямых
- •3. Кривые второго порядка
- •Окружность
- •Гипербола
- •Парабола
- •4. Контрольные задания Вопросы для самопроверки
- •Задания для самопроверки
- •Задания для контрольной работы
- •Библиографический список
- •Содержание
Задания для контрольной работы
Вариант 1
1. Даны точки А(–6;3) и В(2;–7). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oу для прямой 5х–у+3=0. 3. Дана гипербола х2–4у2=16. Найти: полуоси a и b; фокусы и эксцентриситет. 4. Найти центр и радиус окружности х2+у2–2х+4у–20=0. |
Вариант 2
1. Даны точки А(–5;1) и В(4;–3). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Показать, что прямые 3х–у+5=0 и х+3у–1=0 перпендикулярны. 3. Найти фокус F и уравнение директрисы параболы у2=24х. 4. Установить, что уравнение 5х2+9у2–30х+18у+9=0. определяет эллипс. Найти координаты его центра, полуоси, эксцентриситет и уравнения директрис. |
Вариант 3
1. Даны точки А(3;–4) и В(–6;8). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Даны вершины треугольника А(–2;2), В(3;4), С(–7;8). Найти уравнение медианы AD. 3. Дана гипербола 16х2–9у2=144. Найти полуоси a и b, фокусы, эксцентриситет. 4. Найти центр и радиус окружности х2+у2+4х–2у+5=0. |
Вариант 4
1. Даны точки А(5;–2) и В(–7;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, проходящей через точки А(1;5), В(4;3). 3. Дана гипербола х2–4у2=16. Найти полуоси a и b; фокусы и эксцентриситет. 4. Установить, что уравнение 16х2+25у2+32х–100у–284=0 определяет эллипс. Найти координаты его центра, полуоси, эксцентриситет и уравнения директрис. |
Вариант 5
1. Даны точки А(7;–1) и В(4;–5). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, отсекающей на оси ординат отрезок b=–5 и имеющей угловой коэффициент k=7 3. Дан эллипс 9х2+25у2=225. Найти его полуоси, фокусы, эксцентриситет, уравнения директрис. 4. Установить, что уравнение 16х2–9у2–64х–54у–161=0 определяет гиперболу. Найти координаты ее центра, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. |
Вариант 6
1. Даны точки А(1;7) и В(5;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить уравнение линии центров двух окружностей, заданных уравнениями (х+2)2+(у–1)2=16 и (х+2)2+(у+5)2=25. 3. Определить величину параметра и расположение ветвей параболы у2=6х относительно координатных осей. 4. Установить, что уравнение 4х2+3у2–8х+12у–32=0 определяет эллипс. Найти координаты его центра, полуоси, эксцентриситет и уравнения директрис. |
Вариант 7
1. Даны точки А(3;0) и В(4;–2). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, проходящей через точки А(1;5), В(4;3). 3. Определить величину параметра и расположение ветвей параболы у2=6х относительно координатных осей. 4. Найти центр и радиус окружности х2+у2+6х–4у+14=0. |
Вариант 8
1. Даны точки А(–7;4) и В(5;–2). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, отсекающей на оси ординат отрезок b=–5 и имеющей угловой коэффициент k=7. 3. Дана гипербола х2–4у2=16. Найти: полуоси a и b; фокусы и эксцентриситет. 4. Найти центр и радиус окружности х2+у2+х=0. |
Вариант 9
1. Даны точки А(5;–3) и В(0;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Показать, что прямые 3х–у+5=0 и х+3у–1=0 перпендикулярны. 3. Дана гипербола 16х2–9у2=144. Найти полуоси a и b, фокусы, эксцентриситет. 4. Найти центр и радиус окружности х2+у2+у=0. |
Вариант 10
1. Даны точки А(10;3) и В(–1;–3). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить уравнение линии центров двух окружностей, заданных уравнениями (х+2)2+(у–1)2=16 и (х+2)2+(у+5)2=25. 3. Дан эллипс 9х2+25у2=225. Найти его полуоси, фокусы, эксцентриситет. 4. Установить, что уравнение 9х2–16у2+90х+32у–367=0 определяет гиперболу. Найти координаты ее центра, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. |
Вариант 11
1. Даны точки А(–5;2) и В(4;–1). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oу для прямой 5х–у+3=0. 3. Найти фокус F и уравнение директрисы параболы у2=24х. 4. Установить, что уравнение 16х2–9у2–64х–18у+199=0 определяет гиперболу. Найти координаты ее центра, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. |
Вариант 12
1. Даны точки А(3;–6) и В(–7;2). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить уравнение линии центров двух окружностей, заданных уравнениями (х+2)2+(у–1)2=16 и (х+2)2+(у+5)2=25. 3. Дана гипербола х2–-4у2=16. Найти полуоси a и b, фокусы и эксцентриситет. 4. Определить уравнение линии центров двух окружностей, заданных уравнениями (х–3)2+у2=9 и (х+2)2+(у–1)2=1. |
Вариант 13
1. Даны точки А(1;–5) и В(–3;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Даны вершины треугольника А(–2;2), В(3;4), С(–7;8). Найти уравнение медианы AD. 3. Дан эллипс 9х2+25у2=225. Найти его полуоси, фокусы, эксцентриситет. 4. Определить уравнение линии центров двух окружностей, заданных уравнениями х2+у2–4х+6у=0 и х2+у2–6х=0. |
Вариант 14
1. Даны точки А(–4;3) и В(8;–6). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, отсекающей на оси ординат отрезок b=–5 и имеющей угловой коэффициент k=7. 3. Дана гипербола х2–4у2=16. Найти полуоси a и b, фокусы и эксцентриситет.
4. Установить,
что уравнение
Найти координаты ее вершины и величину параметра. |
Вариант 15
1. Даны точки А(–5;2) и В(4;–7). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oу для прямой 5х–у+3=0. 3. Дана гипербола 16х2–9у2=144. Найти полуоси a и b, фокусы, эксцентриситет. 4. Определить полуоси эллипса 4х2+9у2=25. |
Вариант 16
1. Даны точки А(4;–7) и В(–2;5). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить уравнение линии центров двух окружностей, заданных уравнениями (х+2)2+(у–1)2=16 и (х+2)2+(у+5)2=25. 3. Найти фокус F и уравнение директрисы параболы у2=24х. 4. Установить, что уравнение у=46х2–8х+7=0 определяет параболу. Найти координаты ее вершины и величину параметра. |
Вариант 17
1. Даны точки А(–3;5) и В(4;0). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, отсекающей на оси ординат отрезок b=–5 и имеющей угловой коэффициент k=7. 3. Дана гипербола х2–4у2=16. Найти: полуоси a и b, фокусы и эксцентриситет.
4. Установить,
что уравнение
|
Вариант 18
1. Даны точки А(3;10) и В(–3;–1). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oу для прямой 5х–у+3=0. 3. Определить величину параметра и расположение ветвей параболы у2=6х относительно координатных осей. 4. Определить полуоси эллипса 9х2+25у2=1. |
Вариант 19
1. Даны точки А(2;–5) и В(–1;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Показать, что прямые 3х–у+5=0 и х+3у–1=0 перпендикулярны. 3. Дана гипербола 16х2–9у2=144. Найти полуоси a и b, фокусы, эксцентриситет. 4. Определить полуоси эллипса х2+4у2=1. |
Вариант 20
1. Даны точки А(–6;3) и В(2;–7). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Даны вершины треугольника А(–2;2), В(3;4), С(–7;8). Найти уравнение медианы AD. 3. Дана гипербола х2–4у2=16. Найти: полуоси a и b, фокусы и эксцентриситет. 4. Установить, что уравнение х=2у2–12у+14 определяет параболу. Найти координаты ее вершины и величину параметра. |
Вариант 21
1. Даны точки А(5;1) и В(4;–3). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной к прямой АВ. Найти расстояние между точками А и В. 2. Составить уравнение прямой, проходящей через точки А(1;5), В(4;3). 3. Определить величину параметра и расположение ветвей параболы у2=6х относительно координатных осей. 4. Определить полуоси эллипса 16х2+у2=16. |
Вариант 22
1. Даны точки А(–7;4) и В(3;–2). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной прямой АВ. Найти расстояние между точками А и В. 2. Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oу для прямой 5х–у+3=0. 3. Найти фокус F и уравнение директрисы параболы у2=24х. 4. Дан эллипс 9х2+5у2=45. Найти его полуоси, фокусы, эксцентриситет, уравнения директрис. |
Вариант 23
1. Даны точки А(8;–6) и В(–4;3). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной к прямой АВ. Найти расстояние между точками А и В. 2 Даны вершины треугольника А(–2;2), В(3;4), С(–7;8). Найти уравнение медианы AD. 3. Дана гипербола 16х2–9у2=144. Найти полуоси a и b, фокусы, эксцентриситет.
4. Установить,
что уравнение
Найти координаты ее вершины и величину параметра. |
Вариант 24
1. Даны точки А(1;–3) и В(–5;4). Составить уравнение прямой, проходящей через точки А и В. Найти угловой коэффициент прямой, параллельной к прямой АВ. Найти расстояние меду точками А и В. 2. Составить уравнение прямой, проходящей через точки А(1;5), В(4;3). 3. Дана гипербола х2–4у2=16. Найти: полуоси a и b, фокусы и эксцентриситет. 4. Установить, что уравнение х=–у2+2у–1 определяет параболу. Найти координаты ее вершины и величину параметра. |
