- •Шомахова т.Х.
- •Кумыкова Элина Тугановна, Безрокова Мадина Борисовна, Бориева Мархаба Курманбаевна, Абрегова Алла Владимировна
- •Unit I science and society
- •1. Listen to or look through the following text and say what ideas it contains.
- •2. Look through the text again and entitle it.
- •3. Look through the text once more and say what kind of passage it is:
- •4. Read the text thoroughly with a dictionary and answer the following questions:
- •5. Give Russian equivalents to the following words, word combinations and scientific terms from the text:
- •6. Complete the following sentences choosing the words, word combinations or scientific terms from the list below.
- •7. Find synonyms to the given words, word combinations and scientific terms in ex. 5;
- •8. Translate the following sentences into Russian paying attention to the italicized words:
- •1. Read the next text connected with science and give answers to the following questions:
- •How would you answer the questions?
- •Unit II … as a branch of science
- •1. Look through the text concentrating on the beginning and the end of each paragraph, and write an outline, either in Russian or in English (time limit — 10 min.).
- •2. Paragraph Study.
- •3. Read the whole text again and see if any corrections should be made in your original outline.
- •4. Write an abstract of the text in three sentences.
- •Read and translate the text.
- •Unit III modern achievements in electronics and nanoelectronics text 1 Graphene
- •Read and translate the text.
- •Text 2 Molecular scale electronics
- •Read and translate the text.
- •Unit IV outstanding scientists in nanotechnology text 1 Richard Phillips Feynman
- •Read and translate the text.
- •Text 2 Walter Schottky
- •Read and translate the text.
- •Unit V ethical problems of scientific research text 1 The cloning of humans is justifiable
- •Read and translate the text.
- •2. Answer the questions on the text.
- •3. Analyzing the content of a text
- •Text 2 Artificial Intelligence
- •Read the text 'Artificial Intelligence' and say if machines can be as clever as humans.
- •Complete each sentence (a—h) with one of the endings (1-8):
- •Give the definitions of the following words
- •Answer the questions:
- •Fill in the table
- •Read the quotations below. Choose any statement and comment on it
- •1) Read the text and be ready for a comprehension check-up.
- •2) Check up for comprehension.
- •Unit VI special texts text 1 Nanocomposites and their Applications
- •A survey of the applications of nanocomposites. The following survey of nanocomposite applications introduces you to many of the uses being explored, including:
- •Text 2 Synthesis of Nanomaterials by High Energy Ball Milling
- •Unit VII special texts text 1 Synthesis of Nanomaterials by Laser Ablation
- •Text 2 Chemical Vapor Synthesis of Nanomaterials
- •Unit VIII special texts text 1 Nanoelectromechanical system
- •Text 2 Nanocircuitry
- •Unit IX special texts text 1 Carbon nanotube
- •Text 2 Quantum computer
- •Unit X first steps in science
- •Look through the text and be ready to summarize its main ideas.
- •Read the text to find the answers to the following questions:
- •Read the text again to find the answers to the following questions:
- •Speaking
- •Answer the questions:
- •Complete the sentences which contain the words from the Active Vocabulary Section. Speak about your research problem.
- •Answer the questions:
- •Complete the sentences with the words from the Active Vocabulary Section. Speak about the historical background of your research problem.
- •Ask for and give information on the historical background of the research problems under study.
- •Act out the situation.
- •Complete the sentences with the words from the Active Vocabulary Section. Speak about the purpose of your current research and the method used.
- •Ask for and give information about your current research, namely its purpose and the methods you employ.
- •Act out the situation.
- •Answer the questions:
- •Complete the sentences which contain the words from the Active Vocabulary Section. Speak about your research results and conclusions.
- •Ask for and give information about your research results and conclusions.
- •Act out the situations.
- •List of materials used
Text 2 Nanocircuitry
Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the quantum realm, where quantum mechanical effects become very important. One nanometer is equal to 10−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are transistors, interconnections, and architecture, all fabricated on the nanometer scale.
One of the most fundamental concepts to understanding nanocircuits is the formulation of Moore’s Law. This concept arose when Intel co-founder Gordon Moore became interested in the cost of transistors and trying to fit more onto one chip. It relates that the number of transistors that can be fabricated on a silicon integrated circuit—and therefore the computing abilities of such a circuit—is doubling every 18 to 24 months. The more transistors one can fit on a circuit, the more computational abilities the computer will have. This is why scientists and engineers are working together to produce these nanocircuits so millions and perhaps even billions of transistors will be able to fit onto a chip. Despite how good this may sound, there are many problems that arise when so many transistors are packed together. With circuits being so tiny, they tend to have more problems than larger circuits, more particularly heat - the amount of power applied over a smaller surface area makes heat dissipation difficult, this excess heat will cause errors and can destroy the chip. Nanoscale circuits are more sensitive to temperature changes, cosmic rays and electromagnetic interference than today's circuits. As more transistors are packed onto a chip, phenomena such as stray signals on the chip, the need to dissipate the heat from so many closely packed devices, tunneling across insulation barriers due to the small scale, and fabrication difficulties will halt or severely slow progress. Many believe the market for nanocircuits will reach equilibrium around 2015. At this time they believe the cost of a fabrication facility may be as much as $200 billion. There will be a time when the cost of making circuits even smaller will be too much, and the speed of computers will reach a maximum. For this reason, many scientists believe that Moore’s Law will not hold forever and will soon reach a peak, since Moore's law is largely predicated on computational gains caused by improvements in micro-lithographic etching technologies.
In producing these nanocircuits, there are many aspects involved. The first part of their organization begins with transistors. As of right now, most electronics are using silicon-based transistors. Transistors are an integral part of circuits as they control the flow of electricity and transform weak electrical signals to strong ones. They also control electric current as they can turn it on off, or even amplify signals. Circuits now use silicon as a transistor because it can easily be switched between conducting and nonconducting states. However, in nanoelectronics, transistors might be organic molecules or nanoscale inorganic structures. Semiconductors, which are part of transistors, are also being made of organic molecules in the nano state.
The second aspect of nanocircuit organization is interconnection. This involves logical and mathematical operations and the wires linking the transistors together that make this possible. In nanocircuits, nanotubes and other wires as narrow as one nanometer are used to link transistors together. Nanowires have been made from carbon nanotubes for a few years. Until a few years ago, transistors and nanowires were put together to produce the circuit. However, scientists have been able to produce a nanowire with transistors in it. In 2004, Harvard University nanotech pioneer Charles Lieber and his team have made a nanowire—10,000 times thinner than a sheet of paper—that contains a string of transistors. Essentially, transistors and nanowires are already pre-wired so as to eliminate the difficult task of trying to connect transistors together with nanowires.
The last part of nanocircuit organization is architecture. This has been explained as the overall way the transistors are interconnected, so that the circuit can plug into a computer or other system and operate independently of the lower-level details. With nanocircuits being so small, they are destined for error and defects. Scientists have devised a way to get around this. Their architecture combines circuits that have redundant logic gates and interconnections with the ability to reconfigure structures at several levels on a chip. The redundancy lets the circuit identify problems and reconfigure itself so the circuit can avoid more problems. It also allows for errors within the logic gate and still have it work properly without giving a wrong result.
Scientists in India have recently developed the world’s smallest transistor which will be used for nanocircuits. The transistor is made entirely from carbon nanotubes. Nanotubes are rolled up sheets of carbon atoms and are more than a thousand times thinner than human hair. Normally circuits use silicon-based transistors, but these will soon replace those. The transistor has two different branches that meet at a single point, hence giving it a Y shape. Current can flow throughout both branches and is controlled by a third branch that turns the voltage on or off. This new breakthrough can now allow for nanocircuits to hold completely to their name as they can be made entirely from nanotubes. Before this discovery, logic circuits used nanotubes, but needed metal gates to be able to control the flow of electrical current.
TASKS
Read the title of the passage to know what it deals with.
Read the passage carefully to know its content in more detail.
Name the paragraphs dealing with predictions of aspects of nanocircuit.
Name the paragraphs that describe the semiconductors, nanowires and nanotubes.
Find the conclusive paragraph in which architecture as a part of nanocircuit organization is accounted for.
Find the paragraph concerned with the Moore’s Low.
Thoroughly read paragraph 1 and define its main point. Summarize paragraph 1 in no more than two sentences. Begin with: The paper reports on ...
Thoroughly read paragraphs 2, 3, 4 and condense their content. Compress paragraphs 2, 3 and 4 into a statement using the phrases: A careful account is given to... It is reported that... The paper claims that...
Thoroughly read paragraphs 5, 6 and condense their content. Compress paragraphs 5 and 6 into a statement using the phrases: Much attention is given to ... It is claimed that... The paper points out that...
Summarize the content of the passage using the phrases: The paper provides information on ... The paper defines the phenomenon of... An attempt is made to... The paper points out... The paper claims that...
