Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тяговые рельсовые цепи.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
331.3 Кб
Скачать
  1. Тяговые рельсовые цепи, заземления

  1. Рельсовые цепи, отсасывающие линии

Рис. 2.46. Схема электрических соеди­нителей в рельсовой цепи на участках, оборудованных автоблокировкой: а — с двухниточными рельсовыми цепя­ми; б — с однониточными; 1 — стыковой электрический соединитель; 2 — изоли­рующий стык; 3 — дроссель-трансформа­тор; 4 — продольный электрический со­единитель; 5 — электротяговая рельсовая цепь; 6 — нетяговая рельсовая цепь

На электрифицированных железнодорожных линиях постоянно­го и переменного тока в качестве обратного провода используют рельсы (так называемая рельсовая цепь). Чем ниже сопротивление рельсовой цепи, тем меньше потери напряжения и энергии в ней. На железных дорогах применяют рельсы Р50, Р65 и Р75. Электри­ческое сопротивление 1 км рельса Р75 постоянному току при t = = 20 °С составляет 0,0218 Ом. Сопротивление рельсовой цепи при переменном токе вследствие влияния магнитных свойств стали в

  1. 7 раз больше. На сопротивление рельсовой цепи также оказывает влияние наличие стыков между отдельными рельсами.

Для уменьшения сопротивления рельсовой цепи на электрифи­цированных линиях устанавливают стыковые электрические соеди­нители из отрезков гибкого медного провода площадью сечения не менее 50 мм2 при переменном и не менее 70 мм2 при постоянном токе с двумя наконечниками, привариваемыми электросваркой или термитным способом к головкам рельсов. Поверхность контакта в месте приварки принята не менее 250 мм2. При ремонте пути до­пускается вместо стыковых электрических соединителей применять на стыковых болтах тарельчатые пружины с графитовой смазкой не более трех месяцев. Состояние рельсовых стыков проверяют сты комером или с помощью милливольтметров, которыми определяют сопротивление неизолированного рельсового стыка по отношению к сопротивлению рельса. Это сопротивление не должно превышать сопротивления 3 м целого рельса (не более 100 мкОм) при длине рельсов 12,5 м и 6 м при длине рельсов 25 м и более, а на уравни­тельных рельсах бесстыкового пути не более 200 мкОм. Преиму­щественным считается применение бесстыкового пути.

На электрифицированных линиях, оборудованных автоблокиров­кой или электрической централизацией с использованием обеих рельсовых нитей, что применяют на перегонах и главных путях про­межуточных станций, для выделения блок-участков устраивают изолирующие стыки. Для создания пути тока в обход изолирую­щих стыков устанавливают дроссель-трансформаторы (рис. 2.46, а). Большое индуктивное сопротивление обмоток дроссель-трансформаторов делает невозможным перетекание переменного то­ка, применяемого в устрой­ствах СЦБ, с одной рельсовой нити на другую. Большое ин­дуктивное сопротивление со­здается в результате сложения магнитных потоков при одном и том же направлении тока в обеих половинах обмотки дроссель-трансформатора.

Для участков постоянного тока обмотки дроссель-транс­форматоров представляют не­значительное сопротивление и каждая пара дроссель-транс- форматоров с объединенными средними точками обеспечи­вает надежное соединение. На участках с электротягой посто­янного тока в рельсовой цепи применяют дроссель-транс- форматоры типа ДТ-0,2-1000,

ДТ-0,6-1000, ДТ-0,2-1500, ДТ- 0,4-1500 [50].

На линиях переменного тока тяговый ток также свободно про­ходит через обмотки дроссель-трансформаторов и перемычку между средними точками, так как тяговые токи в двух половинах каж­дого трансформатора имеют противоположное (разное) направле­ние, вследствие чего магнитные потоки, наводимые этими токами, компенсируют друг друга. Путь протекания тягового тока через дроссель-трансформаторы на рис. 2.46, а показан стрелками. На участках с электротягой переменного тока в рельсовой цепи при­меняют дроссель-трансформаторы типа ДТ-1-150 и ДТ-1-300. На станциях стыкования для пропуска постоянного и переменного тока применяют дроссель-трансформатор ДТ-0,6-500 С [50].

На линиях переменного тока в отличие от частоты 50 Гц, на которой работает электрическая тяга, для лучшей избирательности в устройствах СЦБ используют частоту 25 или 75 Гц. Предпочтитель­ной является частота 25 Гц, при которой возможно резервирование питания автоблокировки от линий ДПР. На линиях постоянного тока принимают частоты 50 и 25 Гц. Более предпочтительна час­тота 25 Гц, отличная от промышленной и этим самым создающая условия для более надежной работы устройств СЦБ.

Асимметрия обратного тягового тока в двухниточных рельсовых цепях допускается не более 120 А при постоянном токе и не более 12 А при переменном токе. При наличии в рельсовых цепях дрос­сель-трансформаторов ДТ-0,2-1500 или ДТ-0,4-1500 асимметрия тягового тока может быть не более 180 А на участках постоянного тока, при наличии — ДТ-1-300 на участках переменного тока — не более 24 А [3; И; 50].

Двухпутные и многопутные электрифицированные участки обо­рудуют междупутными электрическими тяговыми соединителями. Эти соединители, как и междурельсовые, междроссельные, дроссельные и стрелочные, выполняют медными и не менее чем двухпроводными с площадью сечения каждого провода 70 мм2 и более при постоянном токе и 50 мм2 — при переменном, с прокладкой изолированно от земляного полотна и балласта. Длина междупутного электрического соединителя не должна быть более 100 м.

Параллельное соединение путей при применении дроссель-транс- форматоров обеспечивают установкой соединителей между средними точками через три блок-участка.

При однониточных рельсовых цепях СЦБ на станциях для тя­говых токов отводят одну из ниток на каждом пути. В этом случае у каждого изолирующего стыка осуществляют переход цепи СЦБ с одной рельсовой нити на другую. Для обеспечения прохождения тягового тока в местах изолирующих стыков с одной электротяговой рельсовой нити на другую устанавливают продольный электричес­кий соединитель (рис. 2.46, б). Междупутные соединители в этих случаях располагают в горловинах станции, местах присоединения отсасывающих проводов и через каждые 400 м пути.

Схема электрических соединителей на стрелочных переводах при двухниточных рельсовых цепях показана на рис. 2.47, а и однони­точных — на рис. 2.47, б.

На электрифицированных линиях, где рельсы не используют для цепей автоблокировки и электрической централизации, междурель-

Рис. 2.47. Схема электрических соединителей на стрелочных переводах: а — при двухниточных рельсовых цепях; б — однониточных; 1 — электротяго- вая рельсовая цепь, 2 — стальной штепсельный соединитель; 3 — стрелочный и междурельсовый электрические соединители; 4 — изолирующий стык; 5 — нетяговая рельсовая цепь

совые и междупутные электрические соединители могут быть из стального прутка диаметром 12 мм при постоянном токе и 10 мм — при переменном или из стальной полосы 40x5 мм. Их прокладывают изолированно от земляного полотна и балласта. Междурельсовые соединители устанавливают через каждые 300 м, а междупутные — через каждые 600 м.

На линиях переменного тока применяют провода обратного тока или экранирующие, подключаемые параллельно рельсам. Эти про­вода подвешивают по опорам контактной сети и присоединяют к рельсам при присоединении отсасывающих трансформаторов между ними (см. рис. 2.41), а без трансформаторов — через два на третий блок-участок. При этих схемах тяговый ток, переходя из рельсовой цепи, в основном протекает в этих проводах.

Отсасывающие линии у тяговых подстанций присоединяют непо­средственно к тяговым рельсовым нитям, и в этом месте устраивают междупутное электрическое соединение. На участках с двухниточ­ными рельсовыми цепями отсасывающие линии присоединяют к средним точкам дроссель-трансформаторов, установленных у бли­жайшего к тяговой подстанции изолирующего стыка. В этих местах также устраивают междупутное электрическое соединение.

Отсасывающие линии переменного тока выполняют двумя па­раллельными нитями, используя рельсы подъездного пути, соеди­ненные с контуром заземления подстанции, и перемычку между за­земленной фазой трансформаторов и рельсами станционных путей. Отсасывающие линии, которыми присоединяют рельсовые нити к тяговым подстанциям постоянного и переменного тока, выполняют воздушными или кабельными, при этом они должны иметь изоля­цию от земли не менее чем на 1000 В. Воздушные отсасывающие линии располагают по тем же опорам, что и питающие линии (ниже их).

Тяговый ток, возвращаясь на тяговую подстанцию по рельсам, при недостаточной изоляции рельсов от земли растекается по земле. Такой ток называют блуждающим. Блуждающие токи, ответвляясь в землю, проходят также по подземным металлическим сооружениям (водопроводам и т.п.). Переход тока с подземного металлического сооружения в землю вызывает электрокоррозию металла, которая может быть очень интенсивной. Вследствие электрокоррозии, ес­ли не проводить специальных мероприятий по защите, выходят из строя стальные трубопроводы, кабели, подземные части опор кон­тактной сети. Опасность электрокоррозии стальной арматуры же­лезобетона усугубляется тем обстоятельством, что объем продуктов коррозии в два с лишним раза больше объема металла, подвергнув­шегося электрокоррозии. Это создает внутреннее перенапряжение в бетоне, вызывающее его растрескивание, что приводит к еще более интенсивной коррозии атмосферной и почвенной.

На электрифицированных дорогах переменного тока электро­коррозия проявляется в значительно меньшей степени ввиду пери­одического изменения направления тока (100 раз в 1 с при частоте 50 Гц).

Для ограничения утечки тяговых токов в землю и тем самым снижения вредного воздействия блуждающих токов на подземные сооружения принимают меры по увеличению переходного сопро­тивления между рельсами и землей и уменьшению сопротивления рельсовой цепи.

Изоляции рельсов от земли способствуют щебеночный балласт, просвет между подошвой рельса и поверхностью балласта размером не менее 30 мм, железобетонные или деревянные шпалы, пропи­танные антисептиками. Все присоединенные к рельсам заземляю­щие провода и соединители изолируют от земли и металлических и железобетонных сооружений. Все неэлектрифицированные пути отделяют от электрифицированных двумя изолирующими стыками, установленными в каждую рельсовую нить так, чтобы исключалась возможность замыкания подвижным составом неэлектрифицнро- ванных путей с электрифицированными. В местах примыкания к электрифицированным путям тупиков, не используемых для про­хождения тяговых токов, устраивают по одному изолирующему стыку в каждой рельсовой нити.

Рис. 2.48. Схема расположения катодных и анодных зон на участках постоянного тока:

1 — катодная зона; 2 — анодная зона

На линиях постоянного тока при прохождении поездов между рельсами и землей создается разность потенциалов (рис. 2.48). Зоны потенциалов подразделяются на катодную I, где рельс по отноше­нию к земле имеет отрицательный потенциал, что характерно для мест около тяговых подстанций, так как ток из земли стекает к рельсу; анодную 2, где рельс имеет положительный потенциал, что характерно для середины фидерной зоны, так как ток от рельса стекает в землю, и знакопеременную, где потенциал рельса может меняться. При рекуперативном торможении на спусках, когда элек­трическая энергия от двигателей поступает в контактную сеть, в зависимости от значения тока рекуперации катодная зона может быть и в середине фидерной зоны.