Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
papp_voprosy-otvety 46-50.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
87.48 Кб
Скачать

49.Аппараты, применяемые для разделения неоднородных систем фильтрованием.

Фильтрование — это процесс разделения с помощью пористой перегородки, способной пропускать жидкость или газ, но задерживать взвешенные частицы. Движущей силой процесса фильтрования является разность давлений. В случаях, когда разность давлений создается центробежными силами, процесс называют Центробежным фильтрованием.

Фильтрованием называют процессы разделения неоднородных систем при помощи пористых перегородок, которые задерживают одни фазы этих систем и пропускают другие. К этим процессам относятся разделение суспензий на чистую жидкость и влажный осадок, аэрозолей на чистый газ и сухой осадок или на чистый газ и жидкость. Закономерности характеризующие процессы разделения перечисленных неоднородных систем,. наряду с общими чертами имеют также существенные отличия, причем закономерности процесса разделения суспензий установлены полнее по сравнению с соответствующими закономерностями для аэрозолей. В данной книге рассмотрены только процессы разделения суспензий применительно к условиям фильтрования, встречающимся в химической, нефтехимической, нефтеперерабатывающей, угольной, пищевой, целлюлозно-бумажной и некоторых других отраслях промышленности.

В гидромеханических аппаратах используются эффекты закрутки для разделения фаз, эффективность центробежного разделения неоднородных систем характеризуется критерием Фруда — соотношение центробежной силы  (6 ) и силы тяжести (С ) Для разделения неоднородных систем — суспензий и эмульсий под    воздействием центробежной силы применяется центрифугирование. Поддействием центробежной силы в аппарате более тяжелые частицы отбрасываются к стенкам сосуда и неоднородная система разделяется. Использование центробежной силы вместо силы тяжести позволяет регулировать процесс разделения систем и значительно его интенсифицировать, так как создаваемое значение центробежной силы может во много раз превосходить значение силы тяжести.

50. Процесс теплоотдачи к кипящей жидкости, основные закономерности процесса.

Исследования показывают, что закономерность теплоотдачи при развитом пузырьковом кипении практически не зависит от размеров и формы теплоотдающей поверхности. Вместе с тем опыты обнаруживают, что интенсивность теплообмена может меняться в зависимости от состояния, материала и чистоты поверхности нагрева. Влияние этих факторов на теплоотдачу проявляется, по-видимому, в основном за счет изменения плотности центров парообразования. Улучшение теплоотдачи наблюдалось в ряде опытов при увеличении микро шероховатости металлической поверхности, а также при увеличении теплопроводности материала стенки. Имеются данные, показывающие, что выпадение на поверхность нагрева в незначительном количестве налетов и окислов также может способствовать некоторому увеличению теплоотдачи. Однако значительное загрязнение поверхности снижает интенсивность передачи теплоты за счет появления дополнительного термического сопротивления слоя загрязнений. Экспериментально показано [5], что при увеличении краевого угла 0 (в области смачивания) теплообмен увеличивается. При очень чистых поверхностях и чистой жидкости  отмечается снижение теплоотдачи.   Характер движения жидкости и интенсивность теплоотдачи при кипении в большом объеме определяются в основном свойствами кипящей жидкости и плотностью теплового потока или температурой поверхности. Наступление кризиса в этом случае связывается с переходом пузырькового кипения в пленочное.

Коэффициент теплоотдачи в условиях свободного движения в большом объеме зависит от физических свойств жидкости, температурного напора и давления. На рис. 28-1 показан график измене-, ns 3 ния коэффициента теплоотдачи воды при кипении и зависимость плотности  теплового потока. Для определения коэффициента теплоотдачи и критической величины теплового потока при пузырьковом кипении жидкости в условиях естественной конвекции и в большом объеме Г. Н.Кружи-лин, обработавопытные данные на основании теории подобия, предложил обобщенные формулы в следующем виде.

Теплоотдача при кипении. В процессе кипения жидкость обычно сохраняет постоянную температуру, равную температуре насыщения Поверхность, к которой подводится тепловой поток, перегрета сверх t на Д/. При малых значениях At теплота переносится в основном путем естественной конвекции, коэффициенты теплоотдачи можно рассчитать по формуле . При увеличении перегрева поверхности на ней образуется все большее число паровых пузырей, которые при отрыве и подъеме интенсивно перемешивают жидкость. Вначале это приводит к резкому увеличению коэффициента теплоотдачи (рис. 10.3) (пузырьковый режим кипения), но затем парообразование у поверхности становится столь интенсивным, что жидкость отделяется от греющей поверхности почти сплошной прослойкой (пленкой) пара.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]