Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар 2 ЦНС.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.08 Mб
Скачать

1) Прямая связь обеспечивает выработку регулирующих воздействий на основании информации об отклонении константы. Например, раз­дражение холодным воздухом терморецепторов кожи приводит к уве­личению процессов теплопродукции. Обратные связи заключаются в том, что выходной сигнал о состоя­нии объекта регуляции (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие, отрицательная — ослабляет управляющее воздействие и способствует возвращению показателя к стационарному уровню. Отрицательные обратные связи повышают устойчивость биологической системы. Конкретным аппаратом регуляции функций организма является функциональная система, которая, по определению П.К. Анохина, пред­ставляет собой систему, замкнутую за счет постоянной обратной связи, осуществляемой с периферических исполнительных органов опреде­ленным комплексом афферентных импульсов, которые через акцептор действия определяют выполнение ее функции (при дыхании афферент­ные импульсы идут от диафрагмы, трахеи, легких, межреберных мышц и их влияния, несмотря на их различное происхождение, интегрируют­ся в ЦНС путем временных и тонких соотношений между ними).

2) Основные положения нейронной теории сводятся к следующему.  • Вся функционирующая нервная ткань построена только из нейронов, т. е. из нервных клеток и их отростков.  • Нейрон является генетической, анатомической и функциональной единицей.  • Морфологически нейроны отделены друг от друга, они только соприкасаются при помощи контакта.  • Важнейшей частью нейрона, его трофическим центром, является нервная клетка, так как все части нейрона, лишенные связи с ней, неизбежно гибнут; регенерация нервного волокна происходит за счет роста центрального отрезка его, сохранившего связь с клеткой. 

Особенности возникновения и проведения потенциалов действия и локальных потенциалов.

В большинстве нервных клеток порог возбудимости разных ее участков неодинаков. Он ниже всего в области аксонного холмика и начального сегмента аксона и выше в области сомы. Дендриты, как правило, имеют еще более высокий порог. Поэтому потенциал действия обычно возникает в области начального сегмента аксона и уже оттуда распространяется по аксону (ортодромно) и на тело клетки (антидромно). Если ввести в тело клетки микроэлектрод, позволяющий регистрировать потенциал действия, то можно видеть, что последний имеет характерную форму (рис. 61) , демонстрирующую наличие двух основных компонентов. Первый компонент обусловлен активацией зоны начального сегмента и аксонного холмика, второй — тела и деидритов нейрона. Задержка между, первым и вторым компонентами обусловлена тем, что более высокий порог возбудимости тела нейрона и значительное увеличение поверхности мембраны при переходе из аксонного холмика в тело нейрона затрудняют распространение потенциала действия на сомато-дендритическую мембрану.

После окончания потенциала действия во многих нейронах ЦНС наблюдается длительная следовая гиперполяризация. Она особенно хорошо выражена в мотонейронах спинного мозга.

Рис. 61. Потенциал действия, регистрируемый микроэлектродом, введенным в тело мотонейрона.

а — форма потенциала действия, вызываемого антидромно (1), синаптически (2) и прямым приложением тока через микроэлектрод (3); б — следовая гиперполяризация после потенциала действия мотонейрона котенка (1) и ее устранение после замены ионов кальция на ионы марганца (2) и восстановление в нормальном растворе (3).,

Следовая гиперполяризация обусловлена тем, что соматическая мембрана в отличие от мембраны аксонов имеет значительное число кальциевых .каналов. Деполяризация мембраны, развивающаяся во время потенциала действия, активирует кальциевые каналы соматической мембраны (П. Г. Костюк). Входящие внутрь клетки ионы кальция в свою очередь активируют калиевую проводимость мембраны.

" Следовая гиперполяризация играет важную роль в регуляции частоты потенциалов действия, генерируемых нервной клеткой. Способность нейрона отвечать ритмическими разрядами импульсов на длительную деполяризацию, создаваемую потоком импульсов, поступающих на его синапсы,представляет собой одну из важнейших характеристик его активности. В тех нейронах, где следовая гиперполяризация выражена значительно, частота импульсации не может быть очень высокой, так как ее верхние пределы ограничиваются, фактически рефрактерным периодом. Некоторые вставочные нейроны могут выдавать вспышки разрядов с частотой порядка 1000 в секунду. В мотонейронах спинного мозга длительность следовой гиперполяризации достигает 100—150 мс, что значительно увеличивает интервал между последующими потенциалами действия. Поэтому в обычных условиях частота ритмики мотонейронов не превышает 40—50 в секунду. Большинство двигательных актов осуществляется при еще более низкой частоте разрядов мотонейронов. Тонические мотонейроны имеют более длительную следовую гиперполяризацию и разряжаются с более редкой частотой, чем фазические мотонейроны, у которых следовая гиперполяризация короче.

Классификация:

Сенсорные(афферентные)- передают информацию о внешней или внутренней среде в обрабатывающие центры. Первичные СН находятся вне ЦНС, по строению относятся к униполярным, СН более высокого уровня находятся в ЦНС и относятся к мультиполярным.

Моторные (эфферентные) - передают управляющие влияния от обрабатывающих центров к эффекторам (мышцам, железам). Тела МН находятся внутри ЦНС. МН высшего порядка принадлежат мозгу, отростки МН низшего порядка покидают мозг и относятся к периферической нервной системе. По строению МН являются мультиполярными. 

Вставочные (ассоциативные) - интегрируют информацию, поступающую в ЦНС осуществляют взаимодействие между сенсорной и моторной частями НС. Тела ВН находятся внутри ЦНС. По строению ВН являются анаксонными или мультиполярными.

3) Рефлекс- это ответная реакция организма на изменения внешней или внутренней среды при обязательном участиинервной системы. Структурной основой рефлекса- являются рефлекторная дуга и рефлекторное кольцо. Рефлекторное кольцо— совокупность структур нервной системы, участвующих в осуществлении рефлекса и обратной передаче информации о характере и силе рефлекторного действия в центральной нервной системе.