
- •November 16, 2002
- •February 14, 2003
- •February 21
- •February 28
- •March 7
- •March 10
- •March 12
- •March 14
- •March 15
- •March 17
- •March 19
- •March 21
- •March 24
- •March 26
- •March 28
- •March 30
- •March 31
- •April 2
- •April 2
- •April 8-10
- •April 12
- •April 16
- •April 20
- •April 20
- •April 23
- •April 25
- •April 27
- •April 29
- •June 6
- •June 13
- •June 17
- •June 21
- •June 23
- •June 24
- •July 2
- •July 5
- •August 14
- •September 8
- •September 24
- •References
- •Virology
- •Discovery of the SARS Virus
- •Initial Research
- •The Breakthrough
- •Coronaviridae
- •SARS Co-V
- •Genome Sequence
- •Morphology
- •Organization
- •Detection
- •Stability and Resistance
- •Natural Host
- •Antiviral Agents and Vaccines
- •Antiviral Drugs
- •Vaccines
- •Outlook
- •References
- •Routes of Transmission
- •Factors Influencing Transmission
- •Patient Factors in Transmission
- •Asymptomatic Patients
- •Symptomatic Patients
- •Superspreaders
- •The Unsuspected Patients
- •High-Risk Activities
- •Transmission during Quarantine
- •Transmission after Recovery
- •Animal Reservoirs
- •Conclusion
- •References
- •Introduction
- •Modeling the Epidemic
- •Starting Point
- •Global Spread
- •Hong Kong
- •Vietnam
- •Toronto
- •Singapore, February 2003
- •China
- •Taiwan
- •Other Countries
- •Eradication
- •Outlook
- •References
- •Introduction
- •International Coordination
- •Advice to travelers
- •Management of SARS in the post-outbreak period
- •National Measures
- •Legislation
- •Extended Case Definition
- •Quarantine
- •Reduce travel between districts
- •Quarantine after Discharge
- •Infection Control in Healthcare Settings
- •General Measures
- •Protective Measures
- •Hand washing
- •Gloves
- •Face Masks
- •Additional protection
- •Getting undressed
- •Special Settings
- •Intensive Care Units
- •Intubating a SARS Patient
- •Anesthesia
- •Triage
- •Internet Sources
- •Additional information
- •Infection Control in Households
- •Possible Transmission from Animals
- •After the Outbreak
- •Conclusion
- •References
- •Case Definition
- •WHO Case Definition
- •Suspect case
- •Probable case
- •Exclusion criteria
- •Reclassification of cases
- •CDC Case Definition
- •Diagnostic Tests
- •Introduction
- •Laboratory tests
- •Molecular tests
- •Virus isolation
- •Antibody detection
- •Interpretation
- •Limitations
- •Biosafety considerations
- •Outlook
- •Table, Figures
- •References
- •Clinical Presentation and Diagnosis
- •Clinical Presentation
- •Hematological Manifestations
- •Atypical Presentation
- •Chest Radiographic Abnormalities
- •Chest Radiographs
- •CT Scans
- •Diagnosis
- •Clinical Course
- •Viral Load and Immunopathological Damage
- •Histopathology
- •Lung Biopsy
- •Postmortem Findings
- •Discharge and Follow-up
- •Psychosocial Issues
- •References
- •Appendix: Guidelines
- •WHO: Management of Severe Acute Respiratory Syndrome (SARS)
- •Management of Suspect and Probable SARS Cases
- •Definition of a SARS Contact
- •Management of Contacts of Probable SARS Cases
- •Management of Contacts of Suspect SARS Cases
- •SARS Treatment
- •Antibiotic therapy
- •Antiviral therapy
- •Ribavirin
- •Neuraminidase inhibitor
- •Protease inhibitor
- •Human interferons
- •Human immunoglobulins
- •Alternative medicine
- •Immunomodulatory therapy
- •Corticosteroids
- •Other immunomodulators
- •Assisted ventilation
- •Non-invasive ventilation
- •Invasive mechanical ventilation
- •Clinical outcomes
- •Outlook
- •Appendix 1
- •A standardized treatment protocol for adult SARS in Hong Kong
- •Appendix 2
- •A treatment regimen for SARS in Guangzhou, China
- •References
- •Pediatric SARS
- •Clinical Manifestation
- •Radiologic Features
- •Treatment
- •Clinical Course
- •References
Antiviral Agents and Vaccines 37
that these wild animal species play a significant role in the epidemiology of SARS outbreaks. The civets sold on Chinese markets are born in the wild and then captured and raised on farms. They could therefore have acquired the virus from a wild animal or from other animals during captivity or even from humans. More research is needed before any firm conclusions can be reached (WHO Update 64, 23 May).
Antiviral Agents and Vaccines
Antiviral Drugs
Efforts are underway at various institutions to assess potential anti- SARS-CoV agents in vitro. According to the data available so far, Ribavirin, a "broad spectrum" agent, which is active against various RNA viruses (Tam) and which has been used extensively in SARS patients (Koren), seems to lack in vitro efficacy. Convalescent plasma and normal human immunoglobulin, not containing specific anti- SARS-CoV antibodies, have also been used in SARS patients (Wong). In addition, interferons may be promising candidate drugs (Cinatl 2003b).
In the light of the widespread utilization of traditional Chinese medicine in SARS patients in the Far East it is interesting that glycyrrhizin, a compound found in liquorice roots, was recently reported to have a good in vitro activity against SARS-CoV (Cinatl 2003a).
Further research includes detailed physico-chemical analysis of SARS-CoV proteins to allow the development of novel compounds based on targeted drug design (Anand; Thiel).
Vaccines
There are currently no commercial veterinary vaccines to prevent respiratory coronavirus infections, except for infectious bronchitis virus infections in chickens. Although an effective vaccine cannot be expected to be available soon, the relative ease with which SARSCoV can be propagated in vitro and the availability of vaccines against animal coronaviruses, such as avian infectious bronchitis virus, transmissible gastroenteritis coronavirus of pigs, and feline infec
Kamps and Hoffmann (eds.)