- •Global Impact
- •Epidemics and Pandemics
- •Current Situation
- •Individual Impact
- •The Virus
- •Requirements for Success
- •Virology
- •Natural Reservoir + Survival
- •Transmission
- •H5N1: Making Progress
- •Individual Management
- •Epidemic Prophylaxis
- •Exposure Prophylaxis
- •Vaccination
- •Antiviral Drugs
- •Epidemic Treatment
- •Pandemic Prophylaxis
- •Pandemic Treatment
- •Global Management
- •Epidemic Management
- •Pandemic Management
- •Containment
- •Drugs
- •Vaccines
- •Distribution
- •Conclusion
- •Golden Links
- •Interviews
- •References
- •Avian Influenza
- •The Viruses
- •Natural hosts
- •Clinical Presentation
- •Pathology
- •LPAI
- •HPAI
- •Differential Diagnosis
- •Laboratory Diagnosis
- •Collection of Specimens
- •Transport of Specimens
- •Diagnostic Cascades
- •Direct Detection of AIV Infections
- •Indirect Detection of AIV Infections
- •Transmission
- •Transmission between Birds
- •Poultry
- •Humans
- •Economic Consequences
- •Control Measures against HPAI
- •Vaccination
- •Pandemic Risk
- •Conclusion
- •References
- •Structure
- •Haemagglutinin
- •Neuraminidase
- •M2 protein
- •Possible function of NS1
- •Possible function of NS2
- •Replication cycle
- •Adsorption of the virus
- •Entry of the virus
- •Uncoating of the virus
- •Synthesis of viral RNA and viral proteins
- •Shedding of the virus and infectivity
- •References
- •Pathogenesis and Immunology
- •Introduction
- •Pathogenesis
- •Viral entry: How does the virion enter the host?
- •Binding to the host cells
- •Where does the primary replication occur?
- •How does the infection spread in the host?
- •What is the initial host response?
- •Cytokines and fever
- •Respiratory symptoms
- •Cytopathic effects
- •Symptoms of H5N1 infections
- •How is influenza transmitted to others?
- •Immunology
- •The humoral immune response
- •The cellular immune response
- •Conclusion
- •References
- •Pandemic Preparedness
- •Introduction
- •Previous Influenza Pandemics
- •H5N1 Pandemic Threat
- •Influenza Pandemic Preparedness
- •Pandemic Phases
- •Inter-Pandemic Period and Pandemic Alert Period
- •Surveillance
- •Implementation of Laboratory Diagnostic Services
- •Vaccines
- •Antiviral Drugs
- •Drug Stockpiling
- •General Measures
- •Seasonal Influenza Vaccination
- •Political Commitment
- •Legal and Ethical Issues
- •Funding
- •Global Strategy for the Progressive Control of Highly Pathogenic Avian Influenza
- •Pandemic Period
- •Surveillance
- •Treatment and Hospitalisation
- •Human Resources: Healthcare Personnel
- •Geographically Targeted Prophylaxis and Social Distancing Measures
- •Tracing of Symptomatic Cases
- •Border Control
- •Hygiene and Disinfection
- •Risk Communication
- •Conclusions
- •References
- •Introduction
- •Vaccine Development
- •History
- •Yearly Vaccine Production
- •Selection of the yearly vaccine strain
- •Processes involved in vaccine manufacture
- •Production capacity
- •Types of Influenza Vaccine
- •Killed vaccines
- •Live vaccines
- •Vaccines and technology in development
- •Efficacy and Effectiveness
- •Side Effects
- •Recommendation for Use
- •Indications
- •Groups to target
- •Guidelines
- •Contraindications
- •Dosage / use
- •Inactivated vaccine
- •Live attenuated vaccine
- •Companies and Products
- •Strategies for Use of a Limited Influenza Vaccine Supply
- •Antigen sparing methods
- •Rationing methods and controversies
- •Pandemic Vaccine
- •Development
- •Mock vaccines
- •Production capacity
- •Transition
- •Solutions
- •Strategies for expediting the development of a pandemic vaccine
- •Enhance vaccine efficacy
- •Controversies
- •Organising
- •The Ideal World – 2025
- •References
- •Useful reading and listening material
- •Audio
- •Online reading sources
- •Sources
- •Laboratory Findings
- •Introduction
- •Laboratory Diagnosis of Human Influenza
- •Appropriate specimen collection
- •Respiratory specimens
- •Blood specimens
- •Clinical role and value of laboratory diagnosis
- •Patient management
- •Surveillance
- •Laboratory Tests
- •Direct methods
- •Immunofluorescence
- •Enzyme immuno assays or Immunochromatography assays
- •Reverse transcription polymerase chain reaction (RT-PCR)
- •Isolation methods
- •Embryonated egg culture
- •Cell culture
- •Laboratory animals
- •Serology
- •Haemagglutination inhibition (HI)
- •Complement fixation (CF)
- •Ezyme immuno assays (EIA)
- •Indirect immunofluorescence
- •Rapid tests
- •Differential diagnosis of flu-like illness
- •Diagnosis of suspected human infection with an avian influenza virus
- •Introduction
- •Specimen collection
- •Virological diagnostic modalities
- •Other laboratory findings
- •New developments and the future of influenza diagnostics
- •Conclusion
- •Useful Internet sources relating to Influenza Diagnosis
- •References
- •Clinical Presentation
- •Uncomplicated Human Influenza
- •Complications of Human Influenza
- •Secondary Bacterial Pneumonia
- •Primary Viral Pneumonia
- •Mixed Viral and Bacterial Pneumonia
- •Exacerbation of Chronic Pulmonary Disease
- •Croup
- •Failure of Recovery
- •Myositis
- •Cardiac Complications
- •Toxic Shock Syndrome
- •Reye’s Syndrome
- •Complications in HIV-infected patients
- •Avian Influenza Virus Infections in Humans
- •Presentation
- •Clinical Course
- •References
- •Treatment and Prophylaxis
- •Introduction
- •Antiviral Drugs
- •Neuraminidase Inhibitors
- •Indications for the Use of Neuraminidase Inhibitors
- •M2 Ion Channel Inhibitors
- •Indications for the Use of M2 Inhibitors
- •Treatment of “Classic” Human Influenza
- •Antiviral Treatment
- •Antiviral Prophylaxis
- •Special Situations
- •Children
- •Impaired Renal Function
- •Impaired Liver Function
- •Seizure Disorders
- •Pregnancy
- •Treatment of Human H5N1 Influenza
- •Transmission Prophylaxis
- •General Infection Control Measures
- •Special Infection Control Measures
- •Contact Tracing
- •Discharge policy
- •Global Pandemic Prophylaxis
- •Conclusion
- •References
- •Drug Profiles
- •Amantadine
- •Pharmacokinetics
- •Toxicity
- •Efficacy
- •Resistance
- •Drug Interactions
- •Recommendations for Use
- •Warnings
- •Summary
- •References
- •Oseltamivir
- •Introduction
- •Structure
- •Pharmacokinetics
- •Toxicity
- •Efficacy
- •Treatment
- •Prophylaxis
- •Selected Patient Populations
- •Efficacy against Avian Influenza H5N1
- •Efficacy against the 1918 Influenza Strain
- •Resistance
- •Drug Interactions
- •Recommendations for Use
- •Summary
- •References
- •Rimantadine
- •Introduction
- •Structure
- •Pharmacokinetics
- •Toxicity
- •Efficacy
- •Treatment
- •Prophylaxis
- •Resistance
- •Drug Interactions
- •Recommendations for Use
- •Adults
- •Children
- •Warnings
- •Summary
- •References
- •Zanamivir
- •Introduction
- •Structure
- •Pharmacokinetics
- •Toxicity
- •Efficacy
- •Treatment
- •Prophylaxis
- •Children
- •Special Situations
- •Avian Influenza Strains
- •Resistance
- •Drug Interactions
- •Recommendations for Use
- •Dosage
- •Summary
- •References
Influenza Pandemic Preparedness 111
Table 1. Cumulative Number of Confirmed Human Cases of Avian Influenza A / (H5N1) Reported to the WHO up until January 25, 2006 (WHO 2005c) *
|
Cases** |
Deaths |
Vietnam |
93 |
42 |
Thailand |
22 |
14 |
Cambodia |
4 |
4 |
Indonesia |
19 |
14 |
China |
10 |
7 |
Turkey |
4 |
2 |
Total |
152 |
83 |
* WHO reports only laboratory-confirmed cases.
** Total number of cases includes number of deaths
Recent research suggests that the 1918 virus might not have been a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-type virus that adapted to humans (Taubenberger 2005). There is some evidence that the high pathogenicity of the 1918 virus was related to its emergence as a human-adapted avian influenza virus. The intriguing similarity in a number of changes in the polymerase proteins of both the 1918 strain and in the recently circulating, highly pathogenic strains of H5N1 avian viruses that have caused fatalities in humans (Taubenberger 2005), is reason for concern.
Considering that H5N1 is antigenically new, is highly pathogenic in humans and that it may acquire the ability to be efficiently transmitted from human to human, the World Health Organisation reiterated its 1997 call for all countries to prepare for the next pandemic, which it termed “inevitable and possibly imminent” (BWHO 2004), and updated its own pandemic preparedness plan in April 2005 (WHO 2005d).
Influenza Pandemic Preparedness
Planning is essential for reducing or slowing transmission of a pandemic influenza strain and for decreasing or at least spreading out the number of cases, hospitalisations and deaths over time. Preparedness will help to maintain essential services and to reduce the economic and social impact of a pandemic (WHO 2004).
Epidemiological models indicate that a pandemic would have the greatest impact on the poorest countries, as a result of limited surveillance and healthcare resources, as well as the general poor health and nutritional status of the population (WHO 2004).
Pandemic Phases
In order to define the sequence of actions during certain key events, the WHO Global Influenza Preparedness Plan (WHO 2005d) distinguishes different phases. Each phase is associated with international and national public health actions. The national actions to be taken during each phase are further subdivided according to the national epidemiological situation. The WHO strongly recommends that countries consider the national actions proposed in the WHO Global Influenza Preparedness Plan when developing or updating a national plan. A summary of these new phases is presented in Table 2. The world is presently (January 2006) in phase 3, as
