- •Классификация органических соединений. Ряды органических соединений
- •1. Соединения с открытой цепью атомов углерода.
- •2. Циклические соединения.
- •Классы органических соединений
- •Циклические органические соединения.
- •Классификация органических соединений.
- •Карбоциклические соединения
- •Алициклические соединения
- •Ароматические соединения.
- •Гетероциклические соединения
- •Спирты.
- •Свойства спиртов.
- •Метиловый спирт.
- •Этиловый спирт.
- •Многоатомные спирты.
- •Использование многоатомных спиртов.
- •Карбоновые кислоты. Строение карбоновых кислот
- •Свойства карбоновых кислот.
- •Классификация карбоновых кислот.
- •Одноосновные и двухосновные карбоновые кислоты.
- •Низшие, средние и высшие карбоновые кислоты.
- •Предельные и непредельные карбоновые кислоты.
- •Высшие карбоновые (жирные) кислоты
- •Примеры карбоновых кислот Уксусная кислота
- •Полимеры.
- •Реакция полимеризации
- •Реакция поликонденсации
- •Природные полимеры
- •Синтетические полимеры
- •Полимеризационные смолы
- •Конденсационные смолы
Циклические органические соединения.
Циклические органические соединения
Карбоциклические соединения
- ароматические соединения,
- алициклические соединения.
Гетероциклические соединения
Классификация органических соединений.
Напомним, что все органические соединения подразделяются на две большие группы:
соединения с открытой цепью атомов (алифатические) и
циклические соединения.
Циклические соединения характерны наличием в их молекулах, так называемых, циклов.
Цикл – это замкнутая цепь, т. е. такая цепь, которая, начавшись в некоторой вершине, завершается в ней же.
Циклические соединения, в свою очередь, подразделяются на:
Карбоциклические соединения
- алициклические соединения, - ароматические соединения.
Гетероциклические соединения.
Карбоциклические соединения – это соединения, в молекулах которых присутствуют циклы, состоящие только из атомов углерода.
Помимо связи друг с другом, атомы углерода также связаны и с другими атомами (водородом, кислородом и т.д), но сам цикл составлен именно из атомов углерода. Это обстоятельство отражено в их названии (Carboneum по латински – углерод).
Гетероциклические соединения - это циклические соединения, в циклах которых помимо атомов углерода, присутствуют атомы других элементов (кислорода, азота, серы и др.). И это тоже отражено в их названии (от греч. ετερος — «иной», «различный»).
На рисунке выше (справа) в качестве примера гетероциклического соединения приведен Пиридин.
Карбоциклические соединения
Карбоциклические соединения разделяют на алициклические и ароматические.
Алициклические соединения
Алициклические соединения являются одним из двух подвидов карбоциклических соединений.
Алициклические соединения называют так потому, что по химическим свойствам они наиболее близки к алифатическим соединениям, хотя по структуре они и являются кольцеобразными.
Они различаются по числу атомов углерода в цикле и, в зависимости от характера связи между этими атомами, могут быть предельными и непредельными.
В молекулах предельных циклические углеводородов атомы угерода соединены простыми связями, как и в молекулах предельных углеводородов с открытой цепью, что делает их сходными по свойствам с последними.
Примерами таких соединений могут служить циклопарафины:
Названия циклических соединений строятся подобно наименованиям соединений жирного (алифатического) ряда с добавлением приставки «цикло».
Ароматические соединения.
Второй подвид карбоциклических соединений – ароматические соединения.
Ароматический ряд охватывает все карбоциклические соединения, в молекулах которых присутствует специфическая группировка атомов – бензольное кольцо. Эта группировка атомов обуславливает определённые физические и химические свойства ароматических соединений.
Простейшими из них являются бензол С6Н6 и его гомологи, например, толуол(метилбензол) С6Н5-СН3, этилбензол С6Н5-СН2СН3. Общая формула этих соединенийСnH2n-2.
Характерная особенность структуры бензольного кольца – чередующиеся друг с другом три простые и три двойные связи. Для простоты написания бензольное ядро изображается упрощённо в виде шестиугольника, в котором символы С и Н, относящиеся к кольцу, не пишут:
Одновалентный радикал бензола С6Н5-, образующийся при отнятии одного атома водорода от любого углеродного атома бензольного ядра, называют фенилом.
Известны ароматические углеводороды с кратными связями в боковых цепях, например стирол, а также многоядерные, содержащие несколько бензольных ядер, напримернафталин и антрацен:
Или упрощённо:
Получение ароматических соединений и их использование.
Ароматические углеводороды содержатся в каменноугольной смоле, получаемой при коксовании каменного угля. Другим важным источником их получения служит нефть некоторых месторождений.
Ароматические углеводороды также получают путём каталитической ароматизации ациклических углеводородов нефти.
Некоторые ароматические соединения могут быть выделены из эфирных масел растений. Их применяют для получения душистых веществ.
Ароматические углеводороды и их производные широко применяются для получения пластмасс, синтетических красителей, лекарственных и взрывчатых веществ, синтетических каучуков, моющих средств.
Происхождение названия.
Бензол и все соединения, содержащие ядро бензола, названы ароматическими (в начале XIX века), поскольку первыми изученными представителями этого ряда были душистые вещества, или соединения, выделенные из природных ароматических веществ. Теперь к этому ряду относятся многочисленные соединения, не имеющие приятного запаха, но обладающие комплексом химических свойств, называемых ароматическими свойствами.
Особенности свойств и строения ароматических углеводородов.
Ароматические свойства бензола и его гомологов, определяемые особенностью его структуры, выражаются в относительной устойчивости бензольного ядра, несмотря на непредельность бензола по составу.
Так, в отличие от непредельных соединений с этиленовыми двойными связями, бензол устойчив к действию окислителей. Например, подобно предельным углеводородам, он не обесцвечивает перманганат калия. Реакции присоединения для бензола не характерны. Наоборот, для него, как и для других ароматических соединений, характерны реакции замещения атомов водорода в бензольном ядре.
Из сказанного следует, что формула бензола с чередующимися простыми и двойными связями неточно выражает природу связей между атомами углерода в бензольном ядре.
В соответствии с этой формулой в бензоле должны быть три локализованных пи-связи, т.е. три пары пи-электронов, каждая из которых фиксирована между двумя атомами углерода. Если обозначить эти пи-электроны точками, то строение можно представить схемой:
Однако опыт показывает, что в кольце бензола нет обычных двойных связей, чередующихся с простыми, и что все связи между С-атомами равноценны.
Эта равноценность объясняется следующим образом.
Каждый из атомов углерода в кольце бензола находится в состоянии sp2-гибридизации и затрачивает по три валентных электрона на образование сигма-связей с двумя соседними атомами углерода и одним атомом водорода.
При этом все шесть атомов углерода и все сигма-связи С-С и С-Н лежат в одной плоскости:
Облако четвёртого валентного электрона каждого из атомов углерода (т.е. облако р-электрона, не участвующего в гибридизации) имеет форму объёмной восьмёрки («гантели») и ориентировано перпендикулярно плоскости бензольного кольца.
Каждое из таких р-электронных облаков перекрывается над и под плоскостью кольца ср-электронными облаками двух соседних атомов углерода.
Плотность облаков пи-электронов в бензоле равномерно распределена между всеми связями С-С. Иначе говоря, шесть пи-электронов обобщены всеми углеродными атомами кольца и образуют единое кольцевое облако (ароматический электронный секстет).
По этой причине в структурных формулах вместо общепринятого символа бензольного ядра с чередующимися двойными и простыми связями используют шестиугольник с кружочком внутри:
