- •1.Липиды.Биол.Роль.Классификация.
- •2. Переваривание липидов и всасывание продуктов переваривания липидов.
- •5. Биосинтез липидов и их компонентов.
- •6.Транспортные формы липидов в крови.Коэффицент атерогенности.
- •8.Холестерин, биологическое значение. Биосинтез холестерина до меваловои кислоты.
- •9.Патологии липидного обмена.
- •10.Эикозаноиды. Пути образования и биологическая роль в организме.
- •11.Биологическая ценность белков, потребность в белке и аминокислотах. Азотистыи баланс и его виды.
- •12.Переваривание и всасывание белков в жкт.
- •13.Пути использования аминокислот в организме: декарбоксилирование, образование биогенных аминов.
- •14.Дезаминирование, пути использования безазотистых остатков.
- •18.Синтез креатинина, креатина, креатин-фосфата и их значение ждя организма.
- •19. Переваривание и всасывание нуклеопротеинов.
- •20. Механизм возникновения наследственных нарушений обмена аминокислот (фенилкетонурия, альбинизм, алкаптонурия, болезнь Паркинсона).
- •21. Химический состав желудочного сока. Патологические компоненты желудочного сока.
- •22. Понятие о гормонах, биологическая роль гормонов в организме. Классификация, свойства гормонов.
- •Классификация гормонов
- •24. Гормоны поджелудочной железы (пж)
- •25. Гормоны мозгового слоя.
- •27. Гормоны задней доли гипофиза (нейрогипофиза):
- •28. Гормоны щитовидной железы
- •29. Биохимия крови
- •31. Небелковые азотсодержащие вещества Остаточный азот
- •32. Физические свойства мочи здорового человека, их изменения при патологии
- •33. Показатели химического состава мочи.
- •34. Минеральные элементы в организме. Вода, микро- и макроэлементы. Регулирование водно-солевого обмена.
- •35. Образование токсинов в толстом кишечнике из аминокислот.
- •36. Выяснение влияние желчи на активность липазы.
5. Биосинтез липидов и их компонентов.
Сами липиды и некоторые их структурные компоненты поступают в организм человека в основном вместе с пищей. При недостаточном поступлении липидов извне организм способен частично ликвидировать дефицит липидных компонентов путем их биосинтеза. Так, некоторые предельные кислоты могут быть синтезированы в организме ферментативным путем. Приведенная ниже схема отражает суммарный итог процесса образования пальмитиновой кислоты из уксусной:
CH3COOH
+ 7HOOC - CH2 - COOH + 28[H]
C15H31COOH + 7CO2 + 14H2O
Этот процесс осуществляется при помощи кофермента А, который превращает кислоты в тиоэфиры и активирует их участие в реакциях нуклеофильного замещения:
Некоторые
ненасыщенные кислоты (например, олеиновая
и пальмитолеиновая) могут синтезироваться
в организме человека путем дегидрирования
насыщенных кислот. Линолевая и линоленовая
кислоты не синтезируются в
организме человека и поступают только
извне. Основным источником этих кислот
служит растительная пища. Линолевая
кислота служит источником для биосинтеза
арахидоновой кислоты. Она является
одной из важнейших кислот, входящих в
состав фосфолипидов.Триацилглицерины
и фосфатидовые кислоты синтезируются
на основе глицеро-3-фосфата, который
образуется из глицерина путем его
переэтерификации с АТФ. Из общего
количества холестерина, содержащегося
в организме, только 20% его поступает
вместе с пищей. Основное количество
холестерина синтезируется в организме
с участием кофермента ацетил-КоА.
6.Транспортные формы липидов в крови.Коэффицент атерогенности.
Липопротеины – это высокомолекулярные водорастворимые частицы, представляющие собой комплекс белков и липидов. В этом комплексе белки вместе с полярными липидами формируют поверхностный гидрофильный слой, окружающий и защищающий внутреннюю гидрофобную липидную сферу от водной среды и обеспечивающий транспорт липидов в кровяном русле и их доставку в органы и ткани. Плазменные липопротеины – это сложные комплексные соединения, имеющие характерное строение: внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды. Жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин.Классификация: хиломикроны – самые легкие частицы, затем липопротеины очень низкой плотности , липопротеинынизкой плотности и липопротеины высокой плотности . Холестериновый коэффициент атерогенности (К), представЛЯЕТ собой отношение уровня холестерина ЛПНП и ЛПОНП к содержанию холестерина ЛПВП:
В клинике очень удобно рассчитывать этот коэффициент на основании определения уровня общего холестерина ихолестерина ЛПВП:
Чем выше этот коэффициент (у здоровых лиц он не превышает 3), тем выше опасность развития (и наличия) ИБС.
7. В-окисление жирных кислот.
окисление жирных
кислот протекает
в печени,
почках, скелетных и сердечной мышцах,
в жировой
ткани.
Первая стадия β-окисления — дегидрирование активированной жирной кислоты (ацил-КоА) с образованием β-ненасыщенной жирной кислоты с двойной связью в транс-конфигурации (реакция 1: дегидрирование). При этом оба атома водорода с электронами переносятся от фермента наэлектронпереносящий флавопротеин (ETF). ETF-дегидрогеназа переносит восстановительные эквиваленты на убихинон (кофермент Q), который является составной частью дыхательной цепи. Вторая стадия деградации жирной кислоты состоит в присоединении молекулы воды к двойной связи ненасыщенной жирной кислоты (реакция [2]: гидратирование). На третьей стадии происходит окисление гидроксильной группы при С-3 в карбонильную группу (реакция [3]:дегидрирование). Акцептором для восстановительных эквивалентов является НАД+ который передает их в дыхательную цепь. На четвертой стадии активированная β-кетокислота расщепляется ацилтрансферазой (β-кетотиолазой) в присутствии кофермента А (реакция [4]: тиолитическое расщепление). Продуктами реакции являются ацетил-КоА и активированная жирная кислота, углеродная цепь которой короче на два углеродных атома по сравнению с длиной цепи исходной жирной кислоты.
