- •1. Определение ос. Функции ос. Процессы и потоки. Классификация ос. История развития.
- •1.1 Определение ос.
- •Уровни вс.
- •Микроархитектура.
- •Машинный язык.
- •Системное и прикладное по.
- •1.2 Основная функция ос.
- •Варианты мультипрограммирования.
- •Состояния процессов и потоков.
- •1.4 Классификация ос.
- •1.4.1 Признаки классификации.
- •Особенности алгоритмов управления ресурсами. Поддержка многозадачности.
- •Многозадачность.
- •Вытесняющая и не вытесняющая многозадачность.
- •Классификация дисциплин обслуживания.
- •Дисциплины обслуживания.
- •Приоритетное обслуживание.
- •Динамический приоритет.
- •Поддержка многопользовательского режима.
- •Многопроцессорная обработка.
- •Системы пакетной обработки.
- •Системы разделения времени.
- •Системы реального времени.
- •Модульное ядро.
- •Микроядро.
- •Достоинства и недостатки микроядра.
- •Ооп: достоинства и недостатки.
- •1.5 Эволюция операционных систем. Появление ос.
- •Первый “баг”.
- •Этапы эволюции.
- •1 Этап (1940-60).
- •2 Этап (1965-75).
- •3 Этап (1970-80).
- •4 Этап (1980-90).
- •5 Этап (1990 – …).
- •2. Операционная система ms Windows 2000 и выше. Общая характеристика и основные функции. Структура ms Windows 2000-2003. Объекты в ms Windows 2000-2003.
- •2.2 Основная характеристика Windows 2000-2008.
- •2.3 Архитектура ос Windows 2000-2003. Краткая характеристика.
- •Структура ядра.
- •2.4 Объекты Windows 2000-2008.
- •Назначение объектов.
- •Типы объектов Windows 2000-2008.
- •Структура объектов Windows 2000-2003.
- •Удержание объектов.
- •Учет использования ресурсов.
- •Защита объектов.
- •Избирательный доступ.
- •3. Основы файловых систем. Файлы и их атрибуты. Каталоги. Логическая организация фс. Логическая, физическая организация файлов. Кэширование. Raid - системы.
- •4. Основы файловых систем. Файлы и их атрибуты. Каталоги. Логическая организация фс. Логическая, физическая организация файлов. Способы учёта свободного дискового пространства.
- •3.1 Основы файловых систем.
- •3.2, 3.3 Файлы и их атрибуты. Каталоги.
- •3.4 Логическая организация фс.
- •3.5 Логическая, физическая организация файлов.
- •3.6 Кэширование. Кэширование диска.
- •3.7 Raid - системы.
- •Сравнение raid-систем.
- •5. Файловые системы fat и fat32. Структура логического диска. Элемент каталога. Логическая, физическая организация файлов. Хранение длинных имён. Raid – системы.
- •5.1 Файловая система fat16.
- •Размеры разделов и кластеров fat16 для Windows 95-2000.
- •Файловая система vfat.
- •Элемент каталога vfat.
- •Пример длинного имени.
- •6.1 Файловая система ntfs.
- •6.2 Тома ntfs.
- •6.3 Mft и ее структура.
- •6.4 Атрибуты файлов.
- •6.5 Хранение файлов.
- •6.6 Сжатие файлов.
- •6.7 Защита целостности данных.
- •6.8 Дополнительные возможности.
- •7. Сравнение структуры логического диска fat32 и тома ntfs . Функции win32 api для работы с файлами.
- •8. Сравнение структуры логического диска Fat32 и тома ntfs. Варианты организации асинхронной работы с файлами.
- •7.1 Файловая система ntfs vs. Fat.
- •7.2 Функции win32 api для работы с файлами.
- •9. Методы распределения памяти с использованием дискового пространства. Стратегии управления виртуальной памятью. Классификация методов распределения памяти.
- •9.1 Методы распределения памяти с использованием дискового пространства.
- •Страничное распределение.
- •Сегментное распределение.
- •Сегментно-страничное распределение.
- •9.2 Стратегии управления виртуальной памятью (свопинг).
- •Понятие «trashing».
- •10. Архитектура памяти ms Windows 2000. Менеджер вп. Виртуальное ап. Средства защиты памяти. Страничное преобразование. Реализация свопинга в ms Windows 2000-2003.
- •Архитектура api управления памятью.
- •11. Архитектура памяти ms Windows 2000-2003. Организация «статической » виртуальной памяти. Блоки адресов. Состояния блоков адресов. Функции Win32 api.
- •12. Архитектура памяти в ms Windows 200-2003. Организация «динамической» виртуальной памяти. Назначение и преимущество по сравнению с кучами ansi c. Функции Win32 api.
- •13. Архитектура памяти в ms Windows 2000-2003. Проецируемые файлы, назначение и использование. Функции Win32 api. Проецируемые файлы.
- •14. Объекты управления центральным процессором и объединения ресурсов в ms Windows 2000-2003. Атрибуты процессов и потоков. Классы приоритетов.
- •14.1, 14.2 Управление центральным процессором и объединение ресурсов. Атрибуты процессов и потоков. Объекты Windows .
- •Процессы.
- •Потоки.
- •Задание (job).
- •Волокна (fibers).
- •14.3 Классы приоритетов.
- •15. Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003. Классы приоритетов. Относительные приоритеты. Динамическое изменение приоритетов.
- •15.1 Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003. Планирование загрузки однопроцессорной системы.
- •15.3 Относительные приоритеты потоков.
- •15.4 Динамическое изменение приоритетов.
- •16. Граф состояний потоков в ms Windows 2000-2003. Поток простоя. Принципы адаптивного планирования.
- •16.1 Граф состояний потоков в ms Windows 2000.
- •16.2 Поток простоя.
- •16.3 Принципы адаптивного планирования.
- •17. Граф состояний потоков в ms Windows 2000-2003. Особенности планирования в многопроцессорных системах.
- •17.2 Особенности планирования в многопроцессорных системах.
- •18. Граф состояний потоков в ms Windows 2000-2003. Особенности планирования в ос ms Windows Vista и Server 2008.
- •18.2 Особенности планирования в ос ms Windows Vista и Server 2008.
- •19. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершение процессов и потоков, управление потоками
- •20. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершения потоков. Управление потоками.
- •21. Критические секции и состязания. Семафоры, Мьютексы. Задача о читателях и писателях. Предотвращение критических ситуаций и средства синхронизации процессов
- •22. Критические секции и состязания. Семафоры , атомарные операции, critical_section. Задача о читателях и писателях. Предотвращение критических ситуаций и средства синхронизации процессов
- •23. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. События. Семафоры. Функции win 32 api.
- •24. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. Таймеры ожидания. Мьютексы. Функции win 32 api.
- •25. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Анонимные каналы. Почтовые ящики. Функции win 32 api.
- •26. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Именованные каналы. Почтовые ящики. Функции win 32 api.
6.6 Сжатие файлов.
Файловая система NTFS поддерживает прозрачное сжатие файлов. Сжатие файлов производится следующим образом.
Когда файловая система NTFS записывает на диск файл, помеченный для сжатия, она изучает первые 16 логических блоков файла, независимо от того, сколько сегментов на диске они занимают. Затем к этим блокам применяется алгоритм сжатия. Если полученные на выходе блоки могут поместиться в 15 или менее блоков, то сжатые данные записываются на диск, предпочтительно в виде одного сегмента. Если получить выигрыш не получается, то данные 16 блоков записываются без сжатия. Затем алгоритм повторяется для следующих 16 блоков и т.д.
Сжатие файла частями по 16 блоков явилось компромиссом, если бы порции были меньше, то эффективность бы сжатия снизилась. Если размер блока был бы больше, то это замедлило бы произвольный доступ.
На слайде показан файл, в котором первые 16 блоков успешно сжаты в 8 блоков, следующие 16 не могут быть сжаты, наконец, последние 16 блоков также успешно сжаты на 50%.
Эти три части файла записаны в виде трех сегментов, информация о которых хранится в записи MFT. “Пропущенные” блоки обозначаются в записи MFT как сегменты с нулевым дисковым адресом. На слайде за заголовком (0,48) следует 5 пар, две для первого (сжатого) сегмента, одна для несжатого и две для последнего (сжатого) сегмента.
При чтении этого файла система NTFS должна знать, какие из сегментов файла сжаты, а какие нет. Она видит это по дисковым адресам. Дисковый адрес 0 указывает на то, что предыдущий сегмент сжат. Дисковый блок 0 не может использоваться для хранения данных во избежание неоднозначности (это загрузочный сектор).
Произвольный доступ к сжатому файлу возможен, но не прост. Например, для чтения блока 35 необходимо определить где находится этот блок и распаковать весь сегмент.
Разреженные файлы (sparse files):
Другой тип сжатия известен как разреженные файлы.
Если у вас есть файлы, которые содержат множество нулей (попросту говоря в файле есть "пустые области"), то NTFS позволяет сохранять пространство диска, давая таким файлам определение sparse (разреженный).
Так вот при сохранении таких файлов система просто не выделяет место для пустых областей файла - в результате чего и достигается уменьшение размера файла. При обращении системы к частям, отмеченным как пустые, NTFS просто возвращает нулевые значения. При просмотре свойств файла система сообщит о зарезервированном для него размере, хотя фактический объем может занимать в сотни тысяч раз меньший объем.
Разреженные файлы применяются, в частности, в журнале NTFS ($LogFile).
6.7 Защита целостности данных.
NTFS является восстанавливаемой ФС и поддерживает следующие технологии защиты целостности данных:
1. Тома с аппаратной или программное поддержкой RAID 0, RAID 4, RAID 5 и пр.
2. Горячая фиксация - позволяет файловой системе при возникновении ошибки из-за плохого
кластера записать информацию в другой кластер и отметить сбойный в качестве плохого.
3. Механизм транзакций - каждая операция ввода-вывода, которая изменяет файл на разделе NTFS,
рассматривается файловой системой как транзакция и может выполняться только как неделимый
блок.
Система восстановления NTFS гарантирует корректность файловой системы, а не ваших данных.
Целостность данных и кэширование:
NTFS осуществляет доступ к кэшированным файлам, отображая последние в виртуальную память выполняя чтение и запись.
Диспетчер кэша оптимизирует дисковый ввод-вывод при помощи средства отложенной записи (lazy writer) - набора системных потоков управления, вызывающих диспетчер виртуальной памяти для сброса содержимого кэша на диск в фоновом режиме (асинхронная запись на диск).
В связи с применением механизма отложенной записи данные записанные в кэш-память могут быть потеряны с случае сбоя электропитания.
Горячая фиксация:
а) MFT-запись файла с плохим кластером;
б) исправленная MFT-запись файла;
