Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тема 3.2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
630.12 Кб
Скачать

Фрикционные передачи

 

Общие понятия и определения

Фрикционными называют передачи, в которых движение передается силами трения, возникающими в зоне контакта между двумя катками (колесами), прижимаемыми друг к другу с некоторой силой и при вращении одного из них.  При этом сила трения, возникающая между катками фрикционной передачи, должна быть равна по величине или превышать передаваемое передачей окружное усилие.

Возможность передавать заданную нагрузку для фрикционных передач описывается условием:

Rf ≥ Ft,

где:  Ft – передаваемая окружная сила; Rf = fFr – сила трения в зоне контакта катков фрикционной передачи; Fr – прижимная сила; f – коэффициент трения.

Если указанное выше условие не соблюдается, катки фрикционной передачи будут проскальзывать друг относительно друга, не передавая мощность.

Как правило, для создания требуемой силы трения Rfкатки прижимают друг к другу силой Fr, которая во много раз превышает окружную силу Ft.  При коэффициенте f трения 0,05...0,3 сила прижатия катков превосходит передаваемую (окружную) силу не менее, чем в 3...25 раз (с учетом необходимого запаса сцепления).  Прижатие катков фрикционной передачи может осуществляться различными способами – собственным весом конструкции, рычагами, пружинами или специальными устройствами.

Фрикционные передачи работают с небольшим упругим скольжением, которое обусловлено упругими деформациями поверхностных слоев катков.

***

Классификация фрикционных передач

В зависимости от назначения различают фрикционные передачи с нерегулируемым передаточным числом и с бесступенчатым (плавным) регулированием передаточного числа – вариаторы.

В зависимости от взаимного расположения валов и осей фрикционные передачи бывают цилиндрические(при параллельных осях)конические (при пересекающихся осях)лобовые (при перекрещивающихся осях).

В зависимости от условий работы фрикционные передачи подразделяют на открытые (работающие всухую) и закрытые (работающие в масляной ванне).  Открытые передачи обладают большей нагрузочной способностью (большим коэффициентом трения f), требуют меньшую прижимную силу, но обладают такими недостатками, как повышенный нагрев и износ катков при перегрузках.  В закрытых передачах масляная ванна обеспечивает отвод тепла, уменьшает износ катков, тем самым увеличивая надежность и долговечность передачи, но снижает коэффициент трения, что приводит к необходимости увеличивать прижимное усилие между катками.

***

Достоинства фрикционных передач

К достоинствам фрикционных передач можно отнести следующие их качества:

  • Простота конструкции, простая форма рабочих тел (катков) и относительно низкая стоимость.

  • Плавность и бесшумность работы, в том числе и при высоких скоростях.

  • Возможность бесступенчатого регулирования передаточного числа, причем на ходу, без остановки передачи.

  • Возможность пробуксовки при перегрузке, т. е. фрикционная передача способна выполнять функцию своеобразного механического предохранителя, избавляющего дорогостоящие узлы и детали машины от поломки при неожиданных перегрузках.

***

Недостатки фрикционных передач

Недостатки фрикционных передач обусловлены особенностями их конструкции:

  • Необходимость применения специальных прижимных устройств, усложняющих конструкцию.

  • Большие нагрузки на валы и подшипники, обусловленные прижимной силой, что требует увеличения размеров валов и осей, а также применения усиленных опор и подшипников. Этот недостаток фрикционных передач зачастую ограничивает возможность передавать большую мощность.

  • Непостоянное передаточное отношение из-за проскальзывания катков. Скольжение в фрикционной передаче связано с упругими деформациями поверхностных слоев катков, износом поверхностей, возможным ослаблением прижимных устройств, возможным непостоянством коэффициента трения по рабочей поверности катков..

  • Изнашивание рабочих поверхностей катков вследствие проскальзывания, возможность их повреждения(образования лысок) при буксовании.

***

Скольжение в фрикционной передаче

При работе фрикционной передачи неизбежно упругое скольжение, которое вызывается разностью скоростей поверхностных слоев ведущего и ведомого катков. Элементы поверхности ведущего катка подходят к зоне контакта сжатыми, а уходят от нее растянутыми.  У ведомого катка, наоборот – к зоне контакта элементы поверхности подходят растянутыми, а уходят от нее сжатыми.

Следовательно, в зоне контакта удлинение рабочей поверхности обода ведущего катка, соприкасающейся с укорачивающейся поверхностью обода ведомого катка приводит к упругому скольжению, которое всегда имеет место при работе фрикционной передачи.  В результате окружная скорость v2 точек обода ведомого катка несколько меньше окружной скорости точек обода v1 ведущего катка.

Для передач, работающих в масле скольжение связано, также, с наличием масляной пленки.

Скольжение в фрикционной передаче зависит от нагрузки. При перегрузке может наступить буксование, при этом ведущий каток скользит по ведомому, ведомый каток останавливается. Буксование приводит к интенсивному износу рабочих поверхностей.

***

Материалы катков фрикционных передач

К материалам катков предъявляются следующие основные требования:

  • износостойкость и контактная прочность;

  • высокий коэффициент трения;

  • высокий модуль упругости, препятствующий появлению значительной деформации площадки контакта и увеличению потерь на трение.

Для фрикционных катков чаще всего применяют следующие сочетания материалов:

1. Закаленная сталь по закаленной стали. Для быстроходных закрытых силовых передач применяют стали марок 18Х2Н4МА18ХГТШХ15 и другие. Такие передачи имеют высокую износостойкость и КПД, малые габариты, но они требуют точного изготовления.

2. Фрикционные пластмассы (марок 16Л24АКФ-3), текстолит, ретинакс по стали. Эти материалы применяют в малонагруженных открытых передачах. Катки из таких материалов имеют пониженную износостойкость, не требуют высокой точности изготовления.

3. Металлокерамика марки ФАБ-II по закаленной стали применяется в открытых силовых передачах.

4. Сочетание материалов чугун-чугун и чугун-стальиспользуется в передачах, работающих без смазки (всухую)или с недостаточной смазкой.

5. Применяются также катки, покрытые кожей или резиной. Эти материалы обеспечивают высокий коэффициент трения, но обладают малой контактной прочностью. Кроме того, коэффициент трения в таких материалах сильно зависит от влажности воздуха.

6. В малонагруженных и малоответственных фрикционных передачах иногда применяют катки с деревянным покрытием или изготовленные из дерева. Такой материал дешев и имеет достаточно высокий коэффициент трения.

Ниже представлена таблица значений коэффициента трения f для некоторых сочетаний материалов, используемых в фрикционных передачах.

 

Сталь по стали (в масле) .................................

........0,04...0,05

 

Сталь по стали (всухую) ..................................

........0,13...0,18

 

Фрикционная пластмасса по стали...............

........0,35...0,45

 

Текстолит, ретинакс по стали (всухую).......

........0,30...0,35

 

Металлокерамика по стали (всухую).............

........0,30...0,35

 

Сталь по бронзе (периодическое смазывание)

........0,08...0,10

При конструировании фрикционных передач рекомендуется ведущий каток выполнять из менее твердого материала, чем ведомый, чтобы при случайном буксовании на последнем не образовывались лыски.

***



Применение фрикционных передач

Фрикционные передачи с постоянным передаточным числом используют преимущественно при небольших нагрузках – в приборах (спидометры, магнитофоны и т. п.), где требуется плавность и бесшумность работы.

На практике широко применяют реверсивные фрикционные передачи винтовых прессов. Принцип работы такой передачи представлен на рис. 2. При перемещении ведущего катка из положения А в положение Бведомый каток начинает вращаться в обратную сторону (реверс).  Передачи колесо-рельс (для железнодорожного транспорта) и колесо-дорожное полотно (для самоходного транспорта) тоже относятся к фрикционным.

Фрикционные передачи с бесступенчатым регулированием передаточного числа – вариаторы – применяют, например, в металлорежущих, текстильных и других станках, в транспортных машинах, автомобилях и т. п.

Большинство фрикционных передач, применяемых в машиностроении, позволяют передавать мощность до30 кВт при окружной скорости катков до 25 м/сек.

***

Основные характеристики фрикционной передачи

Передаточное число

Передаточное число передачи без учета проскальзывания:

u = ω12 = n1/n2 = D2/D1

где:  ω1 и ω2 - угловая скорость вращения соответственно ведущего и ведомого катков, n1 и n2 - частота вращения катков, D1 и D2 – диаметр ведущего и ведомого катков.

С учетом скольжения передаточное число фрикционной передачи может быть подсчитано по формуле:

u = D2/D1(1 – ε),

где: ε – коэффициент скольжения.

ε = (v1 – v2)/v1,

где:  v1, v2 - линейные скорости в точке контакта. Обычно коэффициент скольжения ε равен 0,002...0,05.

Практически в силовых фрикционных передачах передаточное число u ≤ 7.

Сила трения в контакте

Сила трения в зоне контакта катков фрикционной передачи определяется по формуле:

Rt = f Fr,

где: f – коэффициент трения, Fr – сила прижатия катков.

КПД фрикционных передач

Коэффициент полезного действия (коэффициент потерь мощности) фрикционных передач зависит от потерь на качение и скольжение катков, а также потерь в подшипниках опор. Для каждого типа конструкций передач КПД определяют экспериментально, сравнивая мощность на ведущем и ведомом валах.

Обычно для закрытых фрикционных передач η = 0,88...0,95, для открытых – η = 0,70...0,85 (без учета потерь в подшипниках).

***

Расчет фрикционных передач на прочность

Для фрикционных передач с металлическими катками основным критерием работоспособности являетсяконтактная прочность. Прочность и долговечность фрикционной передачи оцениваются по контактным напряжениям – напряжениям смятия поверхности на площадке контакта.

Контактные напряжения передач с контактом по линии определяют по формуле Герца:

σн = √{(qEпр)/[2π(1 – μ2пр]},     (здесь и далее √ - знак квадратного корня)

где:  q – нормальная нагрузка по длине контактной линии, q = FrK/l, где Fr – сила прижатия катков,  K – коэффициент запаса сцепления (коэффициент нагрузки), K = 1,25...2; l – длина контактной линии; ρпр - приведенный радиус кривизны: ρпр = R1R2/(R1 + R2), где R1 и R2 – радиусы ведущего и ведомого катков; Епр - приведенный модуль упругости, Епр = 2Е1Е2/(Е1 + Е2); μ - коэффициент поперечной деформации.

При μ = 0,3 получим условие прочности по контактным напряжениям:

σн = 0,418√[(qEпр)/ρпр],

где: σн – допускаемое контактное напряжение для менее прочного материала катков.

***

Характер и причины отказов фрикционных передач

Усталостное выкрашивание.

Этот вид отказа характерен для закрытых передач, работающих в условиях качественного смазывания и защищенных от попадания абразивных частиц. Прижимная сила Fr вызывает в зоне контакта катков высокие контактные напряжения, которые циклически нагружают места контакта вследствие вращения катков.  В результате образуются усталостные микротрещины на рабочих поверхностях, развивающиеся из-за наполнения смазкой, и приводящих к выкрашиванию частиц и образованию раковин на поверхности катков.

Для предотвращения усталостного выкрашивания проводят расчет на контактную прочность, и применяют для катков материалы повышенной твердости, что обеспечивает более высокие допускаемые контактные напряжения.

Заедание.

Возникает в быстроходных тяжелонагруженных передачах при разрыве масляной пленки между рабочими поверхностями катков. Это приводит к повышению температуры в месте контакта и местному привару частиц металла (микросварка) с последующим отрывом от одной из поверхностей.  Приварившиеся частицы при последующем контакте задирают рабочие поверхности в направлении скольжения.

Для предотвращения заедания применяют специальные противозадирные масла ВТМ-1ВТМ-2 и др., у которых коэффициент трения в 1,2...1,5 раза выше, чем у нефтяных масел.

Изнашивание.

Этот вид отказа наиболее часто встречается у открытых фрикционных передач. Изнашивание происходит вследствие упругого скольжения в зоне касания катков.

Вариаторы

 

Область применения вариаторов

Вариаторы служат для плавного (бесступенчатого) изменения на ходу частоты вращения ведомого вала при постоянной частоте вращения ведущего вала.  Бесступенчатое регулирование скорости способствует повышению производительности работы машины вследствие возможности выбора оптимального режима, оно благоприятно для автоматизации и управления на ходу.

В качестве механизма главного движения в вариаторах применяют передачи разного типа – фрикционные, ременные, цепные. Их выполняют в виде отдельных механизмов с непосредственным контактом ведущего и ведомого катков, с промежуточным элементом (например, ремнем) и планетарные.

Одной из основных характеристик вариатора являетсядиапазон регулирования, равный отношению максимальной частоты вращения ведомого катка n2max к его минимальной частоте вращения n2min:

Д = n2max/n2min = u2max/u2min.

Обычно для одноступенчатых вариаторов диапазон регулирования выбирают в пределах Д = 3...8.

***

Разновидности вариаторов

В зависимости от формы тел качения вариаторы бывают лобовые, конусные, торовые и другие.  Разработано большое число конструкций вариаторов с различными принципиальными схемами, в зависимости от назначения и применения в различных механизмах и машинах.  Многообразие конструкций вариаторов не позволяет систематизировать методы их расчетов.

Вариаторы подбирают по каталогам и справочникам, в зависимости от передаваемого крутящего момента, диапазона регулирования, частоты вращения ведущего вала и конструктивных особенностей.

***

Лобовые вариаторы

Лобовые вариаторы применяют в винтовых прессах и различных приборах. Бесступенчатое изменение частоты вращения ведомого вала достигается передвижением малого катка вдоль вала, т. е. изменением радиуса R2.  Лобовые радиаторы допускают реверсирование вращения (передвижением малого катка из положения А в положениеБсм. рис. 2).

Рабочие поверхности катков лобовых вариаторов подвержены интенсивному износу вследствие существенной разницы скоростей на площадке контакта(геометрическое скольжение).  По этой же причине лобовые вариаторы имеют невысокий КПД.

Поскольку R1 = const, диапазон регулирования лобовых вариаторов определяется по формуле:

Д = R2max/R2min.

***



Вариаторы с раздвижными конусами

Этот тип вариаторов имеет наибольшее применение в машиностроении. Промежуточным элементом вариаторов с раздвижными конусами является широкий клиновый ремень (см. рис. 3) или специальная цепь.  Плавное изменение частоты вращения ведомого вала достигается раздвижением ведущего и синхронным сближением ведомого конусных катков, т. е. изменением расчетных радиусов катков R1 и R2.

Максимальное и минимальное значение передаточного числа вариатора с раздвижными конусами определяется по формулам:

umax = n1/n2min = R2max/R1min; umin = n1/n2max = R2min/R1max.

Клиноременные вариаторы просты и надежны в эксплуатации, стандартизированы.  Диапазон регулирования таких вариаторов Д ≤ 8.  При использовании широких ремней передаваемая мощность достигает 50 кВт при КПД η = 0,8...0,9.

Наглядно принцип работы клиноременного вариатора можно увидетьздесь.

Цепные вариаторы сложнее и дороже клиноременных, но компактнее, надежнее и долговечнее. Они обеспечивают постоянство передаточного числа из-за отсутствия проскальзывания.  Цепные вариаторы могут передавать мощности до 100 кВт и имеют диапазон регулирования Д ≤ 7.  КПД таких вариаторов η = 0,8...0,9.

Клиноременные и цепные вариаторы не способны осуществлять реверсивное движение ведомого вала.

***

Торовые вариаторы

Торовый вариатор состоит из двух соосных катков с тороидальной рабочей поверхностью и двух или трех промежуточных роликов (рис. 4) Частоту вращения ведомого вала регулируют поворотом промежуточных роликов с помощью рычажного механизма, в результате чего изменяются радиусы поверхностей контактаR1 и R2.

Торовые вариаторы имеют наиболее совершенную и компактную конструкцию в сравнении с вариаторами других типов. Скольжение у них сведено к минимуму.  КПД достигает 0,95, диапазон регулирования Д ≤ 6,3.

Основные недостатки торовых вариаторов – сложность конструкции, высокие требования к точности изготовления и монтажа.  Особенностью торовых вариаторов является противоположное вращение ведущего и ведомого валов.  Реверсивное движение ведомого вала не осуществляют.

Текущее значение передаточного числа торовых вариаторов рассчитывают по формулам:

u = n1/n2 = R2/R1.

***

Многодисковые вариаторы

Многодисковые вариаторы состоят из пакетов ведущих и ведомых раздвижных конических дисков, прижимаемых пружинами (рис. 5).  Изменение частоты вращения ведомого вала в таких вариаторах осуществляется за счет перемещения ведущего вала относительно ведомого в направлениях, указанных на рис. 5 красными стрелками.  При этом изменяется межосевое расстояние и расчетный радиус R1ведущих дисков.

При работе дисков в масляной ванне долговечность и надежность многодисковых вариаторов существенно повышается.

Передаточное число многодисковых вариаторов определяется по формулам:

u = n1/n2 = R2/R1.

Диапазон регулирования многодисковых вариаторов Д ≤ 4,5, КПД η = 0,8...0,9.

Применение многодисковых вариаторов позволяет уменьшить габариты конструкции при больших значениях передаваемой мощности.  Как и рассмотренные выше типы вариаторов (клиноременные, цепные, торовые), многодисковые не способны осуществлять реверсивное движение ведомого вала.

***

Кроме рассмотренных здесь типов вариаторов применяются и другие конструкции - конусные, двухконусные, дисковые, роликовые и т. д. Конструкции некоторых из них представлены на рисунке ниже.

Ременные передачи

 

Общие сведения о ременных передачах

Ременные передачи относятся к передачам трением (фрикционным), у которых передача мощности осуществляется за счет сил трения, возникающих между ведущим, ведомым и промежуточным звеном – упругим ремнем (гибкой связью).  Ведущее и ведомое звено обычно называют шкивами. Этот тип передач обычно применяется для соединения валов, расположенных на значительном расстоянии друг от друга.

Для нормальной работы ременной передачи необходимо предварительное натяжение ремня, которое может осуществляться за счет перемещения одного из шкивов, за счет натяжных роликов или установки двигателя(механизма) на качающейся плите.

***

Классификация ременных передач

1. По форме поперечного сечения ремня: плоскоременные (поперечное сечение ремня имеет форму плоского вытянутого прямоугольника, рис. 1а); клиноременные (поперечное сечение ремня в форме трапеции, рис. 1б); поликлиноременные (ремень снаружи имеет плоскую поверхность, а внутренняя, взаимодействующая со шкивами, поверхность ремня снабжена продольными гребнями, выполненными в поперечном сечении в форме трапеции, рис. 1г); круглоременные (поперечное сечение ремня имеет форму, рис. 1в); зубчатоременная (внутренняя, контактирующая со шкивами, поверхность плоского ремня снабжена поперечными выступами, входящими в процессе работы передачи в соответствующие впадины шкивов, фото ниже).

Наибольшее применение в машиностроении имеют клиновые и поликлиновые ремни. Передачу круглым резиновым ремнем (диаметром 3…12 мм) применяют в приводах малой мощности (настольные станки, приборы, бытовые машины и т. п.).

Разновидностью ременной передачи является зубчатоременная, в которой передача мощности осуществляется зубчатым ремнем путем зацепления зубцов ремня с выступами на шкивах. Этот тип передач является промежуточным между передачами зацеплением и передачами трением. Зубчатоременная передача не требует значительного предварительного натяжения ремня и не имеет такого недостатка, как скольжение ремня, которое присуще всем прочим ременным передачам.

Клиноременную передачу в основном применяют как открытую. Клиноременные передачи обладают большей тяговой способностью, требуют меньшего натяжения, благодаря чему меньше нагружают опоры валов, допускают меньшие углы обхвата, что позволяет применять их при больших передаточных отношениях и малому расстоянию между шкивами.

Клиновые и поликлиновые ремни выполняют бесконечными и прорезиненными. Нагрузку несет корд или сложенная в несколько слоев ткань.

Клиновые ремни выпускают трех видов: нормального сечения, узкие и широкие. Широкие ремни применяются в вариаторах.

Поликлиновые ремни – плоские ремни с высокопрочным кордом и внутренними продольными клиньями, входящими в канавки на шкивах. Они более гибкие, чем клиновые, лучше обеспечивают постоянство передаточного числа.

Плоские ремни обладают большой гибкостью, но требуют значительного предварительного натяжения ремня. Кроме того, плоский ремень не так устойчив на шкиве, как клиновый или поликлиновый.

2. По взаимному расположению валов и ремня:

  • с параллельными геометрическими осями валов и ремнем, охватывающим шкивы в одном направлении – открытая передача (шкивы вращаются в одном направлении, рис. 2а);

  • с параллельными валами и ремнем, охватывающим шкивы в противоположных направлениях –перекрестная передача (шкивы вращаются во встречных направлениях, рис. 2б);

  • оси валов перекрещиваются под некоторым углом (чаще всего 90°, рис. 2в) – полуперекрестная передача;

  • валы передачи пересекаются, при этом изменение направления потока передаваемой мощности осуществляется посредством промежуточного шкива или ролика - угловая передача (рис. 2г).

3. По числу и виду шкивов, применяемых в передаче: с одношкивными валами; с двушкивным валом, один из шкивов которого холостой; с валами, несущими ступенчатые шкивы для изменения передаточного числа (для ступенчатой регулировки скорости ведомого вала).

4. По количеству валов, охватываемых одним ремнем: двухвальная, трех-, четырех- и многовальная передача.

5. По наличию вспомогательных роликов: без вспомогательных роликов, с натяжными роликами (рис. 2д); с направляющими роликами (рис. 2г).

***

Достоинства ременных передач

К достоинствам ременных передач относятся следующие их свойства:

  • Простота конструкции, малая стоимость изготовления и эксплуатации.

  • Возможность передачи мощности на значительное расстояние.

  • Возможность работы с высокими частотами вращения.

  • Плавность и малый шум в работе вследствие эластичности ремня.

  • Смягчение вибрации и толчков благодаря упругости ремня.

  • Предохранение механизмов от перегрузок и ударов за счет возможности ремня проскальзывать (к передачам с зубчатым ремнем это свойство не относится).

  • Электроизолирующая способность ремня используется для предохранения ведомой части машин с электроприводом от появления опасных напряжений и токов.

***



Недостатки ременных передач

Основные недостатки ременных передач:

  • Большие габаритные размеры (в особенности при передаче значительных мощностей).

  • Малая долговечность ремня, особенно в быстроходных передачах.

  • Большая нагрузка на валы и подшипники опор из-за натяжения ремня (этот недостаток менее выражен у зубчатоременных передач).

  • Необходимость применения устройств натяжения ремня, усложняющих конструкцию передачи.

  • Чувствительность нагрузочной способности к загрязнению звеньев и влажности воздуха.

  • Непостоянное передаточное число вследствие неизбежного упругого скольжения ремня.

***

Область применения ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя или двигателя внутреннего сгорания,  когда по конструктивным соображениям межосевое расстояние должно быть достаточно большим, а передаточное число может быть не строго постоянным (конвейеры, приводы станков, дорожных и сельскохозяйственных машин и т. п.). Передачи зубчатым ремнем можно применять и в приводах, требующих постоянного значения передаточного числа.

Мощность, передаваемая ременной передачей, обычно до 50 кВт, но может достигать 2000 кВт и даже более. Скорость ремня v = 5…50 м/сек, а в высокоскоростных передачах – до 100 м/сек и выше.

После зубчатой передачи ременная – наиболее распространенная из всех механических передач. Часто она используется в сочетании с другими типами передач.

***

Геометрические и кинематические соотношения ременных передач

Межосевое расстояние a ременной передачи определяет в основном конструкция привода машины. Рекомендуемые значения межосевого расстояния (см. рис. 3):

- для плоскоременных передач:

a ≥ 1,5(d1 + d2);

- для клиноременных и поликлиноременных передач:

a ≥ 0,55(d1 + d2) + h;

где:  d1, d2 – диаметры ведущего и ведомого шкивов передачи; h - высота сечения ремня.

Расчетная длина ремня Lр равна сумме длин прямолинейных участков и дуг обхвата шкивов:

Lр = 2а + 0,5π(d2 + d1) + 0,25(d2 - d1)2/a.

По найденному значению из стандартного ряда принимают ближайшую большую расчетную длину ремня Lр. При соединении концов длину ремня увеличивают на 30…200 мм.

Межосевое расстояние в ременной передаче для окончательно установленной длины ремня определяют по формуле:

a = [2Lр - π(d2 + d1)]/8 + √{[2Lр - π(d2 + d1)]2 - 8 π(d2 - d1)2}/8.

Угол обхвата ремнем малого шкива

α1 = 180° - 2γ.

Из треугольника О1ВО2 (рис. 3)

sin γ = ВО21О2 = (d2 - d1)/2a.

Практически γ не превышает π/6, поэтому приближенно принимают sin γ = γ (рад), тогда:

γ = (d2 - d1)/2a (рад) или γ° = 180°(d2 –d1)/2πa.

Следовательно,

α1 = 180° - 57°(d2 – d1)/a.

Для проскоременных передач рекомендуют α1 ≥ 150°, для клиноременных и поликлиновых передач α1 ≥ 110°.

Передаточное отношение ременной передачи:

u = i = d2/d1(1 – ξ),

где: ξ – коэффициент скольжения в передаче, который при нормальной работе равен ξ = 0,01…0,02.

Приближенно можно принимать u = d2/d1;    ξ = (v1 –v2)/v1.

Силовые факторы в ременных передачах

 

Силы в ременной передаче

При монтаже и эксплуатации ременной передачи в ней возникают силовые факторы, так или иначе снижающие долговечность машины, агрегата или отдельных узлов и деталей. Основные нагрузки на детали и узлы вызываются натяжением ремня, которое неизбежно присутствует как в неработающей передаче, так и при ее холостом и рабочем ходе.

Предварительное натяжение ремня

Для создания трения между ремнем и шкивами ремню, после установки на передачу создают предварительное натяжение силой F0. Чем больше сила F0, тем выше тяговая способность передачи и ее КПД, но меньше долговечность ремня.  В состоянии покоя или холостого хода передачи каждая ветвь ремня натянута одинаково с силой F0 (см. рис. 1а).

Натяжение ремня в передачах осуществляют регулировочными устройствами, позволяющими перемещать шкивы относительно друг друга, при помощи пружин или сил тяжести узлов, натяжными роликами, установкой двигателя на качающуюся плиту, а также устройствами, позволяющими автоматически изменять натяжение ремня в зависимости от нагрузки в передаче.

Рабочее натяжение ремня

При приложении рабочего вращающего момента Т1происходит перераспределение сил натяжения в ветвях ремня: ведущая ветвь дополнительно натягивается до силыF1, а натяжение ведомой ветви уменьшается до силы F2(см. рис. 1б). Из условия равенства моментов относительно оси вращения получим уравнение:

- Т1 + F1d1/2 – F2d1/2 = 0 или F1 – F2 = Ft,       (1)

где Ft = 2×103Т1/d1 – окружная сила на шкиве, Н. Здесь Т1 – в Н×м; d – в мм.

Общая геометрическая длина ремня не зависит от нагрузки и во время работы передачи остается неизменной. Дополнительное удлинение ведущей ветви компенсируется равным сокращением ведомой ветви. Следовательно, насколько возрастает сила натяжения ведущей ветви ремня, на столько же снижается сила натяжения ведомой ветви, т. е.

F1 = F0 + ΔF и F2 = F0 – ΔF, или F1 + F2 = 2F0.       (2)

Решая совместно уравнения (1) и (2), получаем:

F1 = F0 +Ft/2;     F2 = F0 – Ft/2.

Натяжение ремня центробежной силой

При обегании ремнем шкивов на него действует центробежная сила Fv:

Fv = ρAv2,

где: А – площадь сечения ремня, м2, ρ – плотность материала ремня, кг/м3, v – скорость ремня, м/сек.

Сила Fv отбрасывает ремень от шкива, понижая тем самым силы трения и нагрузочную способность передачи.

Таким образом, силы натяжения ведущей и ведомой ветвей ремня будут равны: - при работе передачи: (F1 + Fv) и (F2 + Fv); - на холостом ходу: (F0 + Fv).

***

Нагрузка на валы и подшипники в ременной передаче

Силы натяжения ветвей ремня нагружают валы и подшипники. Из треугольника Оab (см. рис. 2) суммарная сила Fn, действующая на валы в неработающей передаче,

Fn = 2F0 sin (α1/2),

где α1 – угол обхвата.

Направление силы Fn принимают по линии центров шкивов передачи. Обычно Fn в 2…3 раза больше окружной силы Ft, что является существенным недостатком ременных передач.

***



Скольжение ремня по шкивам

В ременной передаче различают два вида скольжения ремня: упругое скольжение и буксование.

Упругое скольжение

В процессе обегания ведущего шкива ремнем сила его натяжения уменьшается от F1 до F2 (см. рис.3). А так как деформация ремня пропорциональна силе натяжения, то при уменьшении последней ремень под действием силы упругости укорачивается, преодолевая сопротивления силы трения в контакте ремня со шкивом.  При этом ремень отстает от шкива – возникает упругое скольжение ремня по шкиву.  На ведомом шкиве также происходит скольжение, но здесь сила натяжения возрастает от F2 до F1, ремень удлиняется и опережает шкив.

Упругое скольжение происходит не на всей дуге обхвата α, а лишь на части ее – дуге скольжения αc, которая всегда расположена со стороны сбегания ремня со шкива.  Длину дуги скольжения определяет условие равновесия сил трения на этой дуге и разность сил натяжения ветвей, т. е. окружная сила Ft = F1 – F2.  При нормальной работе ременной передачи αc1 = (0,5…0,7)α.

Со стороны набегания ремня на шкив имеется дуга покоя αn, на которой сила в ремне не меняется, оставаясь равной силе натяжения набегающей ветви, а сам ремень движется совместно со шкивом без скольжения. Сумма дуг αc и αn равна дуге обхвата α.

Скорости прямолинейных ветвей v1 и v2 равны окружным скоростям шкивов, на которые они набегают. Потерю скорости (v1 - v2) определяет скольжение на ведущем шкиве, где направление скольжения не совпадает с направлением движения шкива (см. рис. 3).

Таким образом, упругое скольжение ремня неизбежно в ременной передаче, оно возникает в результате разности сил F1 и F2, нагружающих ведущую и ведомую ветви ремня. Упругое скольжение приводит к снижению скорости и, следовательно, к потере части мощности, а также вызывает электризацию, нагревание и изнашивание ремня, сокращая его долговечность.

Упругое скольжение ремня характеризуется коэффициентом скольжения ξ:

ξ = (v1 – v2)/v1,

где v1 и v2 – окружные скорости ведущего и ведомого шкивов.

При нормальном режиме работы обычно ξ = 0,01…0,02.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]