Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тема 2.3.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
473.91 Кб
Скачать

Напряжения в поперечном сечении

Опыты показывают, что если на поверхности бруса круглого сечения нанести прямоугольную сетку, а на торцевой поверхности нанести радиальные линии (рис.5.5), то после деформации кручение окажется что:

- все образующие поворачиваются на один и тот же угол  , а прямоугольники, нанесенные на поверхности, превращаются в параллелограммы;

- торцевые сечения остаются круглыми, плоскими, расстояния между ними не меняются;

- каждое сечение поворачивается относительно другого на некоторый угол  , называемый углом закручивания;

- радиальные линии на торцевой поверхности остаются прямыми.

На основании этих наблюдений можно заключить, что может быть принята гипотеза Бернулли (гипотеза плоских сечений), а в вале возникают условия чистого сдвига, в поперечных сечениях действуют только касательные напряжения, нормальные напряжения равны нулю.

Рассмотрим поперечное сечение вала, расположенное на некотором расстоянии z от торцевого, где Мк=T (рис.5.5). На элементарной площадке dF будет действовать элементарная сила  , момент который относительно оси вала равен  . Крутящий момент Мк, в сечении равен

Рис.5.5

 

Для того чтобы проинтегрировать это выражение необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной dz и толщиной   (рис.5.6).

Правый торец элемента повернется относительно левого на угол  , образующая СВ повернется на угол   и займет положение СВ1. Угол   - относительный сдвиг. Из треугольника ОВВ1 найдем:

Рис.5.6                                                           Рис.5.7

 

 Из треугольника СВВ1 . Откуда, приравнивая правые части, получим

На основании закона Гука при сдвиге:

Подставим выражение (5.2) в (5.1):

Откуда

Подставим значение    в выражение (5.4) получим:

Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.7). При   получим  . Наибольшие напряжения возникают в точках контура сечения при  :

Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сечения при кручении или полярным моментом сопротивления

Для сплошного круглого сечения

Для кольцевого сечения

где   

 

Тогда максимальные касательные напряжения равны

 

Условие прочности при кручении вала круглого и кольцевого сечения

Условие прочности при кручении с учетом принятых обозначений формулируется следующим образом: максимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений и записывается в виде

где   -  берется либо на основании опытных данных, либо (при отсутствии нужных опытных характеристик) по теориям прочности, соответствующим материалу. Например, из теорий прочности для хрупких материалов, примененных для чистого сдвига, следуют такие результаты:

- из второй теории прочности

-  из теории Мора

Из теорий прочности для пластичных материалов при чистом сдвиге получим:

- по третьей теории прочности

- по четвертой теории прочности

Как следует из закона парности касательных напряжений, одновременно с касательными напряжениями, действующими в плоскости поперечного сечения вала, имеют место касательные напряжения в продольных плоскостях. Они равны по величине парным напряжениям, но имеют противоположный знак. Таким образом, все элементы бруса при кручении находятся в состоянии чистого сдвига. Так как чистый сдвиг является частным случаем плоского напряженного состояния, при котором  , то при повороте граней элемента на 450 в новых площадках обнаруживаются только нормальные напряжения, равные по величине   (рис.5.8).

Рассмотрим возможные виды разрушения валов, изготовленных из различных материалов при кручении. Валы из пластичных материалов чаще всего разрушаются по сечению, перпендикулярному к оси вала, под действием касательных напряжений, действующих в этом сечении (рис.5.9,а). Валы из хрупких материалов, разрушаются по винтовой поверхности наклоненной к оси вала под углом 450, т.е. по направлению действия максимальных растягивающих напряжений (рис.5.9,б). У деревянных валов первые трещины возникают по образующим цилиндра, так как древесина плохо сопротивляется действию касательных напряжений, направленных вдоль волокон (рис.5.9,в).

 

Рис.5.8                                               Рис.5.9

 

Таким образом, характер разрушения зависит от способности материала вала сопротивляться воздействию нормальных и касательных напряжений. В соответствии с этим, допускаемые касательные напряжения принимаются равным   - для хрупких материалов и    - для пластичных материалов.

 

Рациональная форма сечения вала

Анализируя эпюру касательных напряжений (рис.5.7) можно отметить, что наибольшие напряжения возникают на поверхности вала, в центральной части они значительно меньше и на продольной оси равны нулю. Следовательно, в сплошном валу материал, находящийся в центральной части в значительной степени недогружен, его вклад в прочность вала мал. Поэтому рациональным для валов считается кольцевое сечение.

 

Деформации при кручении и условие жесткости вала

Из выражения (5.5) следует, что

интегрируя которое по длине вала, получим:

Если Мк = const и   по всей длине вала, то абсолютный угол закручивания

где   - жесткость вала при кручении.

При скачкообразном изменении по длине бруса крутящего момента угол закручивания между его начальным и конечным сечениями определяется как сумма углов закручивания по участкам с постоянным Mk

Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания

Для обеспечения требуемой жесткости вала необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого:

Эта формула выражает условие жесткости вала при кручении. Обычно принимается   на 1 м длины вала.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]