Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BS_otvety.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
412.99 Кб
Скачать

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

  1. Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или убыванию.

  2. Определить разности рангов каждой пары сопоставляемых значений (d).

  3. Возвести в квадрат каждую разность и суммировать полученные результаты.

  4. Вычислить коэффициент корреляции рангов по формуле:

  1. Определить статистическую значимость коэффициента при помощи t-критерия, рассчитанного по следующей формуле:

48 Основные понятия и задачи регрессионного анализа при изучении биомедицинских объектов.

Регрессионный анализ — это статистический метод исследования зависимости случайной величины у от переменных (аргументов) хj (j = 1, 2,..., k), рассматриваемых в регрессионном анализе как неслучайные величины независимо от истинного закона распределения xj.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием  = φ(x1, ..., хk), являющимся функцией от аргументов хj и с постоянной, не зависящей от аргументов дисперсией σ2.

Для проведения регрессионного анализа из (k + 1)-мерной генеральной совокупности (у, x1, х2, ..., хj, ..., хk) берется выборка объемом n, и каждое i-е наблюдение (объект) характеризуется значениями переменных i, xi1, хi2, ..., хij, ..., xik), где хij значение j-й переменной для i-го наблюдения (i = 1, 2,..., n), уi значение результативного признака для i-го наблюдения.

Наиболее часто используемая множественная линейная модель регрессионного анализа имеет вид

 

                     (53.8)

 

где βj — параметры регрессионной модели;

εj — случайные ошибки наблюдения, не зависимые друг от друга, имеют нулевую среднюю и дисперсию σ2.

Отметим, что модель (53.8) справедлива для всех i = 1,2, ..., n, линейна относительно неизвестных параметров β0, β1,…, βj, …, βk и аргументов.

Как следует из (53.8), коэффициент регрессии Bj показывает, на какую величину в среднем изменится результативный признак у, если переменную хj увеличить на единицу измерения, т.е. является нормативным коэффициентом.

В матричной форме регрессионная модель имеет вид

 

                    (53.9)

 

где Y — случайный вектор-столбец размерности п х 1 наблюдаемых значений результативного признака 1, у2,.... уn); Х— матрица размерности п х (k + 1) наблюдаемых значений аргументов, элемент матрицы х,, рассматривается как неслучайная величина (i = 1, 2, ..., n; j=0,1, ..., k; x0i, = 1); β — вектор-столбец размерности (k + 1) х 1 неизвестных, подлежащих оценке параметров модели (коэффициентов регрессии); ε — случайный вектор-столбец размерности п х 1 ошибок наблюдений (остатков). Компоненты вектора εi не зависимы друг от друга, имеют нормальный закон распределения с нулевым математическим ожиданием (Mεi = 0) и неизвестной постоянной σ2 (Dεi = σ2).

Основная цель регрессионного анализасостоит в определении связи между некоторой характеристикойYнаблюдаемого явления или объекта и величинамих1, х2, …, хn, которые обусловливают, объясняют измененияY. ПеременнаяYназываетсязависимой переменной(откликом), влияющие переменныех1, х2, …, хnназываютсяфакторами(регрессорами). Установление формы зависимости, подбор модели (уравнения) регрессии и оценка ее параметров являются задачами регрессионного анализа.

В регрессионном анализе изучаются модели вида Y = φ(X) + ε, гдеY - результирующий признак (отклик, случайная зависимая переменная);X– фактор (неслучайная независимая переменная);ε– случайная переменная, характеризующая отклонение фактора Х от линии регрессии (остаточная переменная).Уравнение регрессиизаписывается в виде:yx = φ(x, b0, b1, …, bp), где х – значения величины Х; yx = Mх(Y);b0, b1, …, bp– параметры функции регрессииφ. Таким образом, задача регрессионного анализа состоит в определении функции и ее параметров и последующего статистического исследования уравнения.

В зависимости от типа выбранного уравнения различают линейнуюинелинейнуюрегрессию (в последнем случае возможно дальнейшее уточнение: квадратичная, экспоненциальная, логарифмическая и т.д.). В зависимости от числа взаимосвязанных признаков различаютпарнуюимножественнуюрегрессию. Если исследуется связь между двумя признаками (результативным и факторным), то регрессия называется парной, если между тремя и более признаками – множественной (многофакторной) регрессией.

49 Уравнения регрессии. Оценка параметров уравнения регрессии по выборке.

Так как в регрессионном анализе хj рассматриваются как неслучайные величины, a Mεi = 0, то согласно (53.8) уравнение регрессии имеет вид

 

                  (53.10)

 

для всех i = 1, 2, ..., п, или в матричной форме:

 

                (53.11)

 

где — вектор-столбец с элементами  1..., i,..., n.

Для оценки вектора-столбца β наиболее часто используют метод наименьших квадратов, согласно которому в качестве оценки принимают вектор-столбец b, который минимизирует сумму квадратов отклонений наблюдаемых значений уi от модельных значений i, т.е. квадратичную форму:

 

 

где символом «Т» обозначена транспонированная матрица.

50 Метод наименьших квадратов (МНК).

Метод наименьших квадратов — метод нахождения оптимальных параметров линейной регрессии, таких, что сумма квадратов ошибок (регрессионных остатков) минимальна. Метод заключается в минимизации евклидова расстояния между двумя векторами — вектором восстановленных значений зависимой переменной и вектором фактических значений зависимой переменной.

Постановка задачи

Задача метода наименьших квадратов состоит в выборе вектора , минимизирующего ошибку . Эта ошибка есть расстояние от вектора  до вектора  . Вектор  лежит в простанстве столбцов матрицы  , так как  есть линейная комбинация столбцов этой матрицы с коэффициентами  . Отыскание решения  по методу наименьших квадратов эквивалентно задаче отыскания такой точки  , которая лежит ближе всего к  и находится при этом в пространстве столбцов матрицы  . Таким образом, вектор  должен быть проекцией  на пространство столбцов и вектор невязки  должен быть ортогонален этому пространству. Ортогональность состоит в том, что каждый вектор в пространстве столбцов есть линейная комбинация столбцов с некоторыми коэффициентами  , то есть это вектор  . Для всех  в пространстве , эти векторы должны быть перпендикулярны невязке  :

Так как это равенство должно быть справедливо для произвольного вектора  , то

Решение по методу наименьших квадратов несовместной системы , состоящей из  уравнений с неизвестными, есть уравнение

которое называется нормальным уравнением. Если столбцы матрицы  линейно независимы, то матрица  обратима и единственное решение

Проекция вектора  на пространство столбцов матрицы имеет вид

Матрица  называется матрицей проектирования вектора  на пространство столбцов матрицы  . Эта матрица имеет два основных свойства: она идемпотентна, , и симметрична, . Обратное также верно: матрица, обладающая этими двумя свойствами есть матрица проектирования на свое пространство столбцов.

51 Оценка коэффициента детерминации

Коэффициент детерминации ( - R-квадрат) — это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью. Более точно — это единица минус доля необъяснённой дисперсии (дисперсии случайной ошибки модели, или условной по признакам дисперсии зависимой переменной) в дисперсии зависимой переменной. В случае линейной зависимости является квадратом так называемого множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. В частности, для модели линейной регрессии с одним признаком коэффициент детерминации равен квадрату обычного коэффициента корреляции между и .

Определение и формула

Истинный коэффициент детерминации модели зависимости случайной величины от признаков определяется следующим образом:

где — условная (по признакам ) дисперсия зависимой переменной (дисперсия случайной ошибки модели).

В данном определении используются истинные параметры, характеризующие распределение случайных величин. Если использовать выборочную оценку значений соответствующих дисперсий, то получим формулу для выборочного коэффициента детерминации (который обычно и подразумевается под коэффициентом детерминации):

где

— сумма квадратов регрессионных остатков,

— общая дисперсия,

— соответственно, фактические и расчетные значения объясняемой переменной,

— выборочное вреднее.

В случае линейной регрессии с константой , где — объяснённая сумма квадратов, поэтому получаем более простое определение в этом случае. Коэффициент детерминации — это доля объяснённой дисперсии в общей:

.

Необходимо подчеркнуть, что эта формула справедлива только для модели с константой, в общем случае необходимо использовать предыдущую формулу.

52 Связь регрессии и корреляции

Сравнивая формулы видим: в их числителе одна и та же величина , что указывает на наличие связи между этими показателями. Эта связь выражается равенством

. (6)

Таким образом, коэффициент корреляции равен средней геометрической из коэффициентов byx и bxy. Формула (6) позволяет, во-первых, по известным значениям коэффициентов регрессии byx и bxy определять коэффициент регрессии Rxy, а во-вторых, проверять правильность расчета этого показателя корреляционной связи Rxy между варьирующими признаками X и Y.

Как и коэффициент корреляции, коэффициент регрессии характеризует только линейную связь и сопровождается знаком плюс при положительной и знаком минус при отрицательной связи.

53. Основные статистические методы

Метод статистики (или статистическая методология) представляет собой совокупность приемов, правил и принципов статистического исследования социально-экономических явлений, т.е. сбора сведений, обработки их, вычисления показателей и анализа (оценки) полученных данных.

Статистические методы:

- метод массовых наблюдений - сбор первичных данных по единицам совокупности;

- сводка и группировка заключается в классификации, обобщении полученных первичных данных;

- методы анализа обобщающих показателей позволяют дать характеристику изучаемому явлению при помощи статистических величин: абсолютных, относительных и средних с целью установления взаимосвязей и закономерностей развития процессов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]