- •Биологическая химия
- •060101 – Лечебное дело
- •Часть II
- •Contents
- •I. Theoretical part
- •1. Lipids metabolism
- •1.1. Classification of lipids
- •2. Glycolipids (basically glycosphingolipids).
- •Galactosyl ceramide
- •Cholesterol
- •1.2. Digestion and absorption of fats
- •Lipolysis of triglycerides in adipose tissue
- •1.3. Fatty acids oxidation
- •2. Transport of fa inside mitochondrion.
- •3 Ketocyl CoA tyolase Palmitic acid preformed rest Palmityl-CoA Acetyl-CoA
- •Oxidation of unsaturated fatty acids
- •Violations of fatty acids oxidation
- •Acetyl-CoA metabolism
- •1.4. Lipogenesis
- •Regulation of fatty acids synthesis and break down
- •1.5. Metabolism of phospholipids
- •1.6. Essencial fatty acids. Eicosanoids
- •1.7. Cholesterol metabolism
- •Distribution and functions of cholesterol
- •Cholesterol biosynthesis
- •1. Conversion of active acetate into mevalonic acid.
- •2. Squalene formation from mevalonic acid.
- •Regulation of cholesterol synthesis
- •Cholesterol esters metabolism
- •Synthesis of bile acids
- •1.8. Regulation of lipid metabolism
- •1.9. Violations of lipid metabolism
- •Violation of fats adsorption processes:
- •Test questions
- •2. Proteins metabolism
- •2.1. Pathways of proteins degradation
- •2. Digestion of proteins.
- •The selectivity of peptidases
- •2.2. Amino acids metabolism
- •The reactions of amino groups
- •Intramolecular deamination.
- •Reactions of the carboxyl group
- •2. Aminoacyladenylate formation.
- •2.3. Ammonia neutralization in the body
- •Storage and transport of ammonia
- •Fumarate pyruvate aspartate
- •2.4. Violations of nitrogen metabolism
- •2.5. Metabolism of individual amino acids
- •2. Metabolism of sulfur amino acids.
- •3. Metabolism of branched chain amino acids.
- •Leu, Ile, Val α-keto acids acyl-CoA derivatives
- •4. Metabolism of dicarboxylic amino acids
- •5. Metabolism of diaminomonocarboxylic acids.
- •6. Metabolism of phenylalanine and tyrosine.
- •7. Metabolism of tryptophan.
- •2.6. Metabolism of conjugated proteins. Chromoproteins metabolism
- •The degradation of hemoglobin in the tissues (the formation of bile pigments)
- •The hemoglobin biosynthesis
- •2.7. Nucleoproteins metabolism
- •Adenine hypoxanthine; guanine xanthine
- •The synthesis of pyrimidine nucleotides u, c, t
- •I nosine-5'-phosphate Xantosine-5'-phosphate
- •The synthesis of deoxyribonucleotides
- •Test questions
- •3. Template biosynthesis
- •3.1. Biosynthesis of nucleic acids
- •3.1.1. Dna biosynthesis (replication)
- •Synthesis of dna in the rna template
- •3.1.2. Rna biosynthesis
- •Rna synthesis in rna template
- •3.2. Protein biosynthesis
- •The properties of the genetic code
- •Preparatory stage of protein synthesis
- •3.2.1. Translation
- •1. Initiation.
- •2. Elongation.
- •3.2.2. Post-translational modification of proteins
- •Transport of synthesized proteins through membranes
- •3.2.3. Regulation of protein biosynthesis
- •3.3. Genetic engineering
- •Test questions
- •4. Hormones, nomenclature, classification
- •Test questions
- •5. Metabolic processes interaction
- •In the organism
- •Protein and carbohydrate metabolisms interconnection
- •Protein and lipid metabolisms interconnection
- •Carbohydrate and lipid metabolisms interconnection
- •Levels of homeostasis regulation
- •Changes in metabolism during starvation
- •Test questions
- •6. Mineral and water and salt metabolism
- •6.1. Water in the human body
- •6.2. Salt metabolism
- •7. Renal biochemistry. The role of the kidneys in the regulation of water and salt metabolism
- •7.1. Excretory function of the kidneys
- •7.2. Homeostatic function of the kidneys
- •7.3. Metabolic functions of the kidneys
- •7.4. Regulation of water and salt metabolism and uropoiesis
- •Test Questions
- •8. Biochemistry of nervous tissue
- •8.1. Features of metabolism of nervous tissue
- •8.2. Mechanism of nerve impulses conduction
- •Cholinergic synapses
- •Test Questions
- •9. Biochemistry of muscle tissue
- •9.1. Chemical composition of muscle tissue
- •Sources of energy for muscle work
- •9.2. Mechanism of muscle contraction and its regulation
- •9.3. Biochemical changes in muscles within pathology
- •Test Questions
- •10. Biochemistry of extracellular matrix
- •10.1. Structure of extracellular matrix
- •Collagens.
- •Fibril-forming collagens
- •Collagen, forming a tela
- •10.2. Features of metabolism of extracellular matrix Catabolism of extracellular matrix proteins
- •Reparation of damage of the extracellular matrix in norm
- •Biochemical changes of connective tissue with aging
- •The lesions of connective tissue
- •11. Blood biochemistry
- •11.1. Respiratory function of blood. Buffer systems of blood
- •11.2. Blood coagulation system. Changes in pathology
- •Extrinsic and intrinsic pathways of blood clotting
- •Test Questions
- •12. Liver biochemistry
- •12.1. Main functions of the liver
- •The role of the liver in the metabolism of carbohydrates
- •The role of liver in lipid metabolism
- •The role of the liver in the metabolism of proteins and amino acids
- •12.2. Choleresis. Pigment metabolism. Types of jaundice
- •The cleavage of hemoglobin: hemoglobinverdoglobinbiliverdinbilirubin.
- •12.3. Detoxifying liver function
- •Test Questions
- •13. Regulation of calcium and phosphorus metabolism
- •14. Bone biochemistry
- •Test Questions
- •II. Laboratory workshop Laboratory work 1. Lipid metabolism
- •Hydrolysis of milk fat by lipase
- •Test Questions
- •Laboratory work 2. Phospholipids. Cholesterol
- •4.1. Schiff reaction.
- •4.2. Salkowski reaction.
- •4.3. Lieberman-Burchard reaction.
- •Preparation of solutions of cholesterol for the calibration curve
- •Test Questions
- •Laboratory work 3. Digestion of proteins. Determination of acids of gastric contents
- •Experiment 2. Qualitative determination of free hydrochloric acid in gastric juice using indicator congo red.
- •Results of the determination of gastric acidity
- •Test Questions
- •Laboratory work 4. The end products of nitrogen metabolism
- •Test Questions
- •Laboratory work 5. Hormones
- •2.1. Biuretic reaction.
- •2.2. Millon’s reaction.
- •2.4. Geller’s test.
- •3. Qualitative reaction to thyroxine.
- •4. Qualitative reactions to the 11-dehydro-17-oxykortikosteron (cortisone).
- •4.1. The reaction with phenylhydrazine sulfate.
- •4.2. The reaction with Fehling's reagent.
- •Test Questions
- •Laboratory work 6. Mineral and water and salt metabolism
- •1.1. Determination the pH of saliva.
- •1.2. Detection of phosphates in saliva.
- •2.1. Qualitative detection of chlorides in the urine.
- •2.2. Detection of calcium in the urine.
- •2.3. Detection of phosphates in the urine.
- •The composition of mixtures for the calibration curve
- •Test Questions
- •Laboratory work 7. Urine biochemistry
- •3.1. Qualitative detection and quantitative determination of protein in the urine.
- •3.1.1. The test by boiling in weak acid environment.
- •3.1.2. The test by boiling in an acid medium in the presence of saturated sodium chloride solution.
- •3.1.3. Geller’s test.
- •3.1.4. The test with sulfosalicylic acid.
- •3.1.5. Quantitative determination of protein in the urine by the method of dilution (Brandberg - Roberts - Stolnikov method).
- •Determination of protein in the urine using dilution method
- •3.2. Semi-quantitative method for determining glucose and ketone bodies in urine using test strips.
- •3.3. Detection of blood pigments in the urine by boiling with alkali (Geller’s test).
- •Test Questions
- •Laboratory 8. Blood biochemistry
- •1. Buffer properties of blood serum.
- •2. Quantitative determination of total protein in serum according to biuretic reaction.
- •The composition of mixtures for the ployying of the calibration curve
- •3. Determination of calcium in serum by the method of de Waard.
- •Test Questions
- •Laboratory work 9. Detection of bile pigments in urine
- •Test Questions
- •Laboratory work 10. Biochemistry of bone and connective tissue
- •1. Preparation of extracts of bone and teeth tissues.
- •Test Questions
- •Bibliography
- •Biochemistry
- •In Two Parts Part II
- •392008, Г. Тамбов, ул. Советская, 190г
1.5. Metabolism of phospholipids
Phospholipids are not an essential energy material. They play an important role in the organization of cellular membranes, in formation of lipoprotein complexes, blood coagulation, immunological reactions, in electron transfer in respiratory chain.
Phospholipids under hydrolysis break down into the higher fatty acids, phosphoric acid, nitrogen bases and glycerole. Phospholipase belongs to esterase (hydrolases subclass).
Phospholipase А1 attacks ester bond of phospholipids in position 1. Phospholipase А2 catalyzes hydrolysis of ester bond in position 2, free fatty acid and lysophospholipid are formed. Phospholipase A1 is localized in endoplasmic reticulum, and А2 - in mitochondria. Phospholipase C attacks ester bond in position 3, 1,2-diglyceride and phosphorylated base are formed. Phospholipase D catalyzes elimination of a nitrogen base from phospholipid.
Phospholipases А2 are best studied. They are found in poison of some snakes. The action of phospholipase on membranes leads to significant changes in their functional activity.
The further metabolism of fatty acids and glycerole was desribed earlier. We will consider choline transformations. One of the major reactions is its acetylation:
Acetylcholine participates in the conduction of nerve impulses.
Phospholipids biosynthesis runs intensively in liver, intestinal wall, testes, ovaries, mammary glands, mainly in endoplasmic reticulum of a cell.
During the synthesis of choline- and ethanolamine containing phospholipids with the help of CTP the CDP-choline or CDP-ethanolamine (active form of nitrogen bases) are formed. Then they react with 1,2-diglycerides. Phosphatidylcholine (lecithin) can be formed also from phosphatidylethanolamine. The donor of methyl groups is S-adenosyl methionine.
At synthesis of inositol containing phospholipids with the help of CTP CDP-diglyceride is formed. It is the active form of diglyceride which then reacts with the nitrogen base.
1.6. Essencial fatty acids. Eicosanoids
Linoleic (18:1; 9,12) and linolenic (18:3; 9,12,15) acids can’t be formed in an organism of mammals including humans due to the lack of the corresponding enzymes. These acids are essential as well as arachidonic acid (20:4; 5,8,11,14). In most mammals, arachidonic acid can be formed from linoleic acid. At long absence in nutrition animals lag in growth, characteristic lesions of skin and hair appear.
Eicosanoids is a large group of physiologically and pharmacologically active substances. They are prostanoids (prostaglandins, prostacyclins, thromboxanes) and leukotrienes. Eicosanoids are derived from arachidonic acid which is a part of phospholipids of plasma membranes. Eicosanoids are divided into 3 groups.
Prostaglandins are 20-carbon fatty acids containing a 5-carbon ring and hydroxi- and/or ketogroups. They are synthesized through the cyclooxigenase pathway. They are synthesized practically in all cells, except erythrocytes and lymphocytes. They influence the tone of smooth muscles, affect blood pressure, control transport of ions across membranes, etc.
It is possible to use PG for prevention of fertilization, stimulation of normal childbirth, interruption of pregnancy, prevention of gastric ulcers, or pain relief, treatment of inflammation and regulation of blood pressure, removal of asthma attacks, etc.
Prostacyclins are subspecies of prostaglandins. They are formed in blood vessel walls. They are inhibitors of thrombocytes aggregation.
Thromboxanes are formed in thrombocytes and after entering a bloodstream invoke vasoconstriction and thrombocytes aggregation.
Leukotrienes are synthesised in leucocytes, thrombocytes and macrophages by lipoxygenase pathway. Leukotrienes are mediators of inflammatory reactions; they cause contraction of bronchial muscle, promote contraction of coronary vessels.
