- •Белки, уровни организации белков
- •Выделяют четыре основных класса липопротеинов:
- •Гликопротеины
- •Способы присоединения углевода к белку Функцией гликопротеинов являются:
- •Протеогликаны
- •Лейцин.
- •Изолейцин.
- •Чем опасен недостаток и избыток изолейцина в организме
- •В каких продуктах питания содержится больше всего метионина
- •Аминокислота метионин и биологически активные добавки к пище на ее основе
- •Треонин.
- •В каких продуктах содержится треонин
- •Трептофан.
- •В каких продуктах питания содержится триптофан
- •Фенилаланин.
- •В каких продуктах содержится фенилаланин
- •Методы выделения и очистки белка! Методы очистки белка
- •Гомогенизация биологического материала
- •Экстракция белков
- •Фракционирование и очистка белков
- •Высаливание
- •Хроматография.
- •Электрофорез.
- •Определение гомогенности белков
Белки, уровни организации белков
Давайте вспомним определение Белков!!!
Мономерами белков являются АК.
Практически все процессы в живых организмах связаны с функционированием белков и нуклеиновых кислот. Белки — и молекулярные машины, и строительные блоки, и оружие живой клетки. На долю белков приходится не менее половины сухой массы животной клетки. В живых организмах они выполняют самые разнообразные функции (строительную, каталитическую, запасающую, транспортную, двигательную, энергетическую, регуляторную, защитную) и служат теми молекулярными инструментами, с помощью которых реализуется генетическая информация.
Аминокислоты способны вступать в реакции полимеризации: одна аминокислота за счёт гидроксила –ОН своей карбоксильной группы соединяется с азотом аминогруппы другой аминокислоты. При этом образуется пептидная связь.
Если соединяются 2 аминокислоты, то образуются дипептиды, если 3 аминокислоты – трипептиды и т.д.
Называются пептиды таким образом:
1) первой указывается аминокислота, которая имеет свободную -NH2 группу;
2) в названиях аминокислот, реагирующих своей карбоксильной группой, окончание «ин» меняется на «ил»;
3) аминокислота, сохраняющая свободную карбоксильную группу, своего окончания не меняет.
Существуют пять типов взаимодействий, сочетание которых обеспечивает формирование и поддержание пространственной структуры белка:
1) водородные связи между R-группами аминокислотных остатков;
2) электростатическое притяжение между противоположно заряженными R- группами;
3) гидрофобные взаимодействия (гидрофобные R-группы некоторых аминокислотных остатков избегают контактов с водным окружением и стремятся собраться вместе внутри белковой структуры, где они защищены от соприкосновения с водой);
4) вандерваальсовы взаимодействия (из-за флуктуаций электрического поля любые два атома на очень близких расстояниях слабо притягиваются;
5) ковалентные поперечные связи (некоторые белки содержат остатки цистеина, которые способны образовывать дисульфидную ковалентную связь, легко разрывающуюся при обработке различными веществами-восстановителями).
Последовательность аминокислот, составляющих белок, называется первичной структурой белка. В ней все связи ковалентные, т.е. самые прочные химические связи. Для сокращенной записи последовательности аминокислот в белковых цепях используют трехбуквенные или однобуквенные условные обозначения. Запись первичной структуры белка выглядит следующим образом:
N-конец H2N-Arg-Gln-His-Ser-Ser-.-Pro-Leu-COOH С-конец
Нумерация аминокислот принята с N-конца белка, т.е. с конца, на котором находится его аминогруппа.
От того, какие аминокислоты входят в состав белка и преобладают в нем, зависят его свойства, в частности, хорошо ли этот белок растворим в воде.
Итак, аминокислотная последовательность определяет пространственную структуру белка, а структура эта уже определяет его функцию, — т.е. с кем этот белок взаимодействует и что при этом делает.
Следующим, более высоким уровнем организации является вторичная структура, где белковая нить закручивается в виде спирали. В типичном белке обычно 60% аминокислотных остатков участвует в формировании вторичных структур. Наиболее обычны пять элементов вторичной структуры - правая и левая α-спирали, параллельный и антипараллельный β-листы и β-изгиб, которые стабилизированы водородными связями. Укладка α и β-структур в глобулу определяет третичную структуру белка. Эти вторичные структуры отличаются определенными, периодическими конформациями главной цепи — при разнообразии конформаций боковых групп.
α-спираль – это молекулярная структура, которая образуется при закручивании полипептидной цепи вправо (в природных белках имеется правая α-спираль). Геометрические параметры её: радиус – 0,25 нм; шаг спирали – 0,54 нм; на один поворот α-спирали приходится 3,6 аминокислотных остатков. Отдельные аминокислоты (про, гли, глу, асп, арг и др.) препятствуют образованию α-спирали или дестабилизируют её. Поэтому могут образовываться спирали, которые по геометрическим параметрам отличаются от α-спирали.
β-структура образуется из зигзагоподобно развёрнутых полипептидных цепей, расположенных рядом. β-структуры образуются за счёт межцепочечных водородных связей, объединяющих группы С=О и N-Н. Во многих природных белках имеются как α-спирализированные участки, так и β-структуры. Например, в молекуле химотрипсина 14% аминокислотных остатков входят в состав α-спирали, 45% - в состав β-структур, 61% - участки с неупорядоченной структурой. В молекуле миоглобина 80% аминокислотных остатков образуют α-спираль, а в молекуле тропомиозина – все 100%.
Пространственное расположение элементов вторичной структуры образует третичную структуру белка. Связи, поддерживающие третичную структуру, еще слабее водородных. Их называют гидрофобными. Это – силы сцепления между неполярными молекулами или неполярными радикалами. Хотя гидрофобные силы сцепления относятся к слабейшим связям, но благодаря их многочисленности они в сумме дают значительную энергию взаимодействия. Участие «слабых» связей в поддержании специфической структуры белковой макромолекулы обеспечивает достаточную ее устойчивость и вместе с тем высокую подвижность. У некоторых белков в поддержании третичной структуры макромолекулы существенную роль играют так называемые –S–S– (эс-эс-связи) дисульфидные ковалентные связи, возникающие между радикалами аминокислоты цистеин.
В зависимости от пространственной формы выделяют глобулярные и фибриллярные белки.
Глобулярные белки имеют округлую или эллипсоидную форму.
К ним относятся: альбумин сыворотки крови, миоглобин мышц, гемоглобин, большинство ферментов.
Глобулярные белки построены из одной или нескольких полипептидных цепей, связанных дисульфидными мостиками и свёрнутых в шароподобную форму (глобулу). Глобула стабилизируется за счёт водородных связей между боковыми радикалами аминокислот. У большинства глобулярных белков полярные (гидрофильные) остатки аминокислот расположены на поверхности глобулы, а неполярные радикалы - во внутренней гидрофобной фазе молекулы.
Фибриллярные белки имеют вытянутую форму молекул. Они образуют ниткообразные комплексы – фибриллы, состоящие из нескольких параллельных полипептидных цепей. Фибриллярные белки являются структурными компонентами соединительной и других опорных тканей организма. К фибриллярным белкам относятся: коллаген, эластин, α -кератин,
Фибриллярные белки формируются путём образования супервторичных (суперспирализированных) структур (образование тропоколлагена, α -кератинов и др.).
Супервторичная структура белков.
В разных по первичной структуре и функциям белках иногда выявляются сходные сочетания и взаиморасположение вторичных структур, которые называются супервторичной структурой. Она занимает промежуточное положение между вторичной и третичной структурами, поскольку это специфическое сочетание элементов вторичной структуры при формировании третичной структуры белка. Супервторичные структуры имеют специфические названия, такие как «α-спираль-поворот-а-спираль», «лейциновая застежка молния», «цинковые пальцы» и др. Такие супервторичные структуры характерны для ДНК-связывающих белков.
|
Доменами называют области в третичной структуре белка с определенной структурной автономией. Домены составляют подуровень структурной организации белка на пути от вторичной к третичной структуре, и свертывание достаточно крупных белковых глобул при биосинтезе белка проходит, вероятно, через стадию формирования доменов. Как правило, домены могут независимо от других частей белковой молекулы поддерживать и даже формировать пространственную структуру. Удается выделить домены с помощью ограниченного протеолиза.
Наличие доменов создает структурные предпосылки для большей внутренней гибкости, динамики белковых молекул, достигаемой смещением доменов относительно друг друга.
«Лейциновая застежка-молния». Этот вид супервторичной структуры используется для соединения двух белков. На поверхности взаимодействующих белков имеются α-спиральные участки, содержащие не менее четырех остатков лейцина. Лейциновые остатки в α-спирали располагаются через шесть аминокислот один от другого. Так как каждый виток α-спирали содержит 3,6 аминокислотных остатка, радикалы лейцина находятся на поверхности каждого второго витка. Лейциновые остатки α-спирали одного белка могут взаимодействовать с лейциновыми остатками другого белка (гидрофобные взаимодействия), соединяя их вместе. Многие ДНК связывающие белки функционируют в составе олигомерных комплексов, где отдельные субъединицы связываются друг с другом «лейциновыми застежками».
Рис. 1.«Лейциновая застежка-молния» между α-спиральными участками двух белков
Примером таких белков могут служить гистоны. Гистоны - ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот - аргинина и лизина (до 80%). Молекулы гистонов объединяются в олигомерные комплексы, содержащие восемь мономеров с помощью «лейциновых застежек», несмотря на значительный одноименный заряд этих молекул.
«Цинковый палец» - вариант супервторичной структуры, характерный для ДНК-связывающих белков, имеет вид вытянутого фрагмента на поверхности белка и содержит около 20 аминокислотных остатков. Форму «вытянутого пальца» поддерживает атом цинка, связанный с радикалами четыре аминокислот - двух остатков цистеина и двух - гистидина. В некоторых случаях вместо остатков гистидина находятся остатки цистеина. Два близко лежащих остатка цистеина отделены от двух других остатков Гисили Циспоследовательностью, состоящей примерно из 12 аминокислотных остатков. Этот участок белка образует α-спираль, радикалы которой могут специфично связываться с регуляторными участками большой бороздки ДНК. Специфичность связывания индивидуального регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца». Такие структуры содержат, в частности, рецепторы стероидных гормонов, участвующих в регуляции транскрипции (считывание информации с ДНК на РНК).
Рис. 2. Первичная структура участка ДНК-связывающих белков, формирующих структуру «цинкового пальца» (буквами обозначены аминокислоты, входящие в состав этой структуры).
Рассматривая третичную структуру белка, нужно сказать о таком процессе, как фолдинг белка.
В биохимии и молекулярной биологии фо́лдингом белка (укладкой белка, от англ. folding) называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).
В результате фолдинга в водных растворах у водорастворимого полипептида уменьшается свободная энергия, гидрофобные остатки аминокислот упаковываются преимущественно внутрь молекулы, а гидрофильные остатки располагаются на поверхности белковой глобулы. К факторам, стабилизирующим конформацию белка, относятся водородные связи, дисульфидные мостики, электростатическое взаимодействие и комплексообразование с ионами металлов.
Для корректной работы белков весьма важна правильная трёхмерная структура. Ошибки сворачивания обычно приводят к образованию неактивного белка с отличающимися свойствами. Считается, что некоторые болезни происходят от накопления в клетках неправильно свёрнутых белков (более подробно это описано в статье Прионы).
В фолдинге участвуют белки-шапероны. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.
Шапероны - специальные белки, катализирующие укладку полипептидов. Шапероны связываются с гидрофобными участками неправильно уложенных белков и помогают им свернуться и достигнуть стабильной нативной структуры и, тем самым, предотвращают их включение в нерастворимые и нефункциональные агрегаты. В течение своей функциональной жизни, белок может подвергаться различным стрессам и денатурации. Такие частично денатурированные белки могут стать мишенью протеаз, агрегировать или укладываться в нативную структуру с помощью шаперонов.
В ряде случаев несколько белковых макромолекул соединяются друг с другом и образуют громадные агрегаты. Подобные полимерные образования, в которых в роли мономеров выступают макромолекулы белка, называют четвертичными структурами. Крепление четвертичной структуры осуществляется слабыми (водородными, гидрофобными) связями, а в некоторых случаях и –S–S– связями.
Примерами белков четвертичной структуры являются: гемоглобин.
Сейчас мы к нему подберемся!
Мы с вами уже знаем, что существуют как простые, так и сложные белки!
Вопрос в зал: Что такое простые белки?
Что такое сложные белки?
У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа – лиганд (лат. ligo - связываю), то есть молекула, связанная с белком. В случае если лиганд несет структурную и/или функциональную нагрузку, он называется простетической группой.
В роли лиганда могут выступать любые молекулы:
молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине,
переносимые белками молекулы: железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине,
субстраты для ферментов – любые молекулы и даже другие белки.
Узнавание лиганда обеспечивается:
комплементарностью структуры центра связывания белка структуре лиганда, иначе говоря, пространственным и химическим соответствием белка и лиганда. Они подходят друг к другу как ключ к замку, например, соответствие фермента и субстрата,
иногда узнавание может зависеть от реакционной способности атома, к которому присоединяется лиганд. Например, связывание кислорода железом гемоглобина, или жирной кислоты с альбумином.
Функции лиганда в составе сложного белка разнообразны:
изменяет свойства белков (заряд, растворимость, термолабильность), например, фосфорная кислота в фосфопротеинах или остатки моносахаридов в гликопротеинах,
защищает белок от протеолиза вне и внутри клетки, например углеводная часть в гликопротеинах,
в виде лиганда обеспечивается транспорт нерастворимых в воде соединений, например, перенос жиров липопротеинами,
придает биологическую активность и определяет функцию белка, например, нуклеиновая кислота в нуклеопротеинах, гем в гемоглобине, углевод в рецепторных белках,
влияет на проникновение через мембраны, внутриклеточную миграцию, сортировку и секрецию белков. Это выполняет, как правило, углеводный остаток.
Нуклеопротеины – это белки, связанные с нуклеиновыми кислотами. Они составляют существенную часть рибосом, хроматина, вирусов.
В рибосомах рибонуклеиновая кислота (РНК) связывается со специфическими рибосомальными белками. Вирусы являются практически чистыми рибо- и дезоксирибонуклеопротеинами.
В хроматине нуклеиновая кислота представлена дезоксирибонуклеиновой кислотой, связанной с разнообразными белками, среди которых можно выделить две основные группы – гистоны и негистоновые белки. Начальный этап упаковки ДНК осуществляют гистоны, более высокие уровни обеспечиваются другими белками.
Фосфопротеины – это белки, в которых присутствует фосфатная группа. Она связывается с пептидной цепью через остатки тирозина, серина и треонина, т.е. тех аминокислот, которые содержат ОН-группу.
Фосфорная кислота может выполнять:
Структурную роль, придавая заряд, растворимость и изменяя свойства белка, например, в казеине молока, яичном альбумине.
Функциональную роль. В клетке присутствует много белков, которые связаны с фосфатом не постоянно, а в зависимости от активности метаболизма. Белок может многократно переходить в фосфорилированную или в дефосфорилированную форму, что играет регулирующую роль в его работе.
Если в белке содержатся ионы одного или нескольких металлов, то такие белки называются металлопротеины. Ионы металлов соединены координационными связями с функциональными группами белка.
Металлопротеины часто являются ферментами. Ионы металлов входят в состав активного центра фермента и здесь:
участвуют в ориентации субстрата,
формируют ковалентные связи с интермедиатами реакции,
являются донорами или акцепторами электронов при взаимодействии фермента с субстратами.
К ферментативным металлопротеинам относятся белки, содержащие например:
медь – цитохромоксидаза, в комплексе с другими ферментами дыхательной цепи митохондрий участвует в синтезе АТФ,
железо – ферритин, депонирующий железо в клетке, трансферрин, переносящий железо в крови, каталаза, обезвреживающая перекись водорода,
цинк – алкогольдегидрогеназа, обеспечивающая метаболизм этанола и других спиртов, лактатдегидрогеназа, участвующая в метаболизме молочной кислоты, карбоангидраза, образующая угольную кислоту из CO2 и H2O, щелочная фосфатаза, гидролизующая фосфорные эфиры различных соединений, α2-макроглобулин, антипротеазный белок крови, фермент кишечника карбоксипептидаза
селен – тиреопероксидаза, участвующая в синтезе гормонов щитовидной железы, антиоксидантный фермент глутатионпероксидаза,
кальций – α-амилаза слюны и панкреатического сока, гидролизующая крахмал.
молибден – ксантиноксидаза, отвечающая за последние реакции катаболизма пуриновых оснований.
магний – гексокиназа, отвечающая за реакцию фосфорилирования глюкозы.
марганец – супероксиддисмутаза, отвечающая за реакцию нейтрализации кислородного радикала супероксид-аниона О2•¯.
никель – уреаза, отвечающая за распад мочевины.
К липопротеинам, строго говоря, принадлежат только белки, содержащие ковалентно связанные липиды.
Однако традиционно к липопротеинам относят также надмолекулярные образования, переносящие липиды в плазме крови, включающие белки и молекулы всех классов липидов.
Концентрация и соотношение количества транспортных липопротеинов в крови играют ведущую роль в возникновении такой распространенной сосудистой патологии как атеросклероз.
Структуру транспортных липопротеинов можно сравнить с орехом, у которых имеется скорлупа и ядро. "Скорлупа" липопротеина является гидрофильной, ядро – гидрофобное.
ядро формируют неполярные эфиры холестерола (ХС) и триацилглицеролы (ТАГ), которые и являются транспортируемыми жирами. Их соотношение колеблется в разных типах липопротеинов.
в поверхностном слое ("скорлупе") находятся фосфолипиды, холестерол, белки. Гидрофильность липидов поверхностного слоя призвана обеспечить растворимость гидрофобного ядра в плазме крови.
Белки в липопротеинах называются апобелками, их выделяют несколько видов: А, В, С, D. В каждом типе липопротеинов преобладают соответствующие ему апобелки, которые несут либо структурную функцию, либо являются ферментами метаболизма липопротеинов.
|
|
Схема строения липопротеина |
Строение липопротеина |
