- •Предисловие
- •Содержание
- •Introduction p. 3
- •Innovation (Part I) p. 80
- •Civil Engineering
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Construction Processes
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part III)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Fundamentals of Reinforced Concrete
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Test II
- •Test III
- •Test IV
- •Using Concrete Formwork in Construction
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Glass Fiber Reinforced Concrete (gfrc)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •When Stress Is Good:
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Post-Tensioned Slabs
- •Active Vocabulary
- •Test II
- •Test III
- •Test IV
- •Why Does Concrete Crack?
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Working with Versatile Lightweight Concrete
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •What is Fly Ash Concrete?
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Concrete Mix with Fly Ash
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Steel Building Designs – Flexibility and Innovation (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Steel Building Advantages (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •What is Tilt-up Construction? (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Precast Concrete, Tilt-up Construction and Tiltwall: What's the Difference in These Terms? (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Environmental engineering
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Concrete: a Sustainable Construction Material that can Help Fight Climate Change
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Sustainable Building
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Final tests test I
- •Test II
- •Test III
- •Test IV
- •References to video files
- •The Concrete Construction Process (Part 3)
- •When Stress Is Good:
- •Flexibility and Innovation
- •What's the Difference in These Terms?
- •That can Help Fight Climate Change
- •1. “Sustainable Home”
- •2. “Innovations in Green Home Building”
- •(Heating, ventilating and air conditioning)
- •Glossary of construction terms Construction Terms Beginning With Letter a
- •Construction Terms Beginning With Letter b
- •Construction Terms Beginning With Letter c
- •Construction Terms Beginning With Letter d
- •Construction Terms Beginning With Letter e
- •Construction Terms Beginning With Letter f
- •Construction Terms Beginning With Letter g
- •Construction Terms Beginning With Letter h
- •Construction Terms Beginning With Letter I
- •Construction Terms Beginning With Letter j
- •Construction Terms Beginning With Letter k
- •Construction Terms Beginning With Letter l
- •Construction Terms Beginning With Letter m
- •Construction Terms Beginning With Letter n
- •Construction Terms Beginning With Letter o
- •Construction Terms Beginning With Letter p
- •Construction Terms Beginning With Letter q
- •Construction Terms Beginning With Letter r
- •Construction Terms Beginning With Letter s
- •Construction Terms Beginning With Letter t
- •Construction Terms Beginning With Letter u
- •Construction Terms Beginning With Letter V
- •Construction Terms Beginning With Letter w
- •Construction Terms Beginning With Letter y
- •Construction Terms Beginning With Letter z
- •Библиография
- •Электронные ресурсы
Environmental engineering
Read, translate the following text and be ready to fulfil the tests:
Environmental engineering is the integration of science and engineering principles to improve the natural environment, to provide healthy water, air and land for human habitation and for other organisms, and to remediate pollution sites. Furthermore it is concerned with finding plausible solutions in the field of public health, implementing law, which promote adequate sanitation in urban, rural and recreational areas. It involves waste water management and air pollution control, recycling, waste disposal, radiation protection, industrial hygiene, environmental sustainability, and public health issues as well as knowledge of environmental engineering law. It also includes studies on the environmental impact of proposed construction projects.
Environmental engineers study the effect of technological advances on the environment. To do so, they conduct hazardous waste management studies to evaluate the significance of such hazards, advise on treatment and containment, and develop regulations to prevent mishaps. Environmental engineers also design municipal water supply and industrial wastewater treatment systems as well as address local and worldwide environmental issues such as the effects of acid rain, global warming, ozone depletion, water pollution and air pollution from automobile exhausts and industrial sources. The field emerged as a separate environmental discipline during the middle third of the 20th century in response to widespread public concern about water and pollution and increasingly extensive environmental quality degradation.
Mitsch and Jorgensen defined and characterized ecological engineering in a 1989 book and clarified it further in their 2004 book. They suggested the goal of ecological engineering as:
a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and
b) the development of new sustainable ecosystems that have both human and ecological values.
They summarized the five concepts, key to ecological engineering as:
1. it is based on the self-designing capacity of ecosystems,
2. it can be a field test of ecological theory,
3. it relies on integrated system approaches,
4. it conserves non-renewable energy,
5. it supports biological conservation.
This engineering discipline combines basic and applied science from engineering, ecology, economics and natural sciences for the restoration and construction of aquatic and terrestrial ecosystems. Scientists have developed air pollution dispersion models to evaluate the concentration of a pollutant at a receptor or the impact on overall air quality from vehicle exhausts and industrial flue gas stack emissions. To some extent, this field overlaps the desire to decrease carbon dioxide and other greenhouse gas emissions from combustion processes.
Read, listen to the pronunciation and memorize the active vocabulary to the text:
