- •Предисловие
- •Содержание
- •Introduction p. 3
- •Innovation (Part I) p. 80
- •Civil Engineering
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Construction Processes
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •The Concrete Construction Process (Part III)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Fundamentals of Reinforced Concrete
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Test II
- •Test III
- •Test IV
- •Using Concrete Formwork in Construction
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Glass Fiber Reinforced Concrete (gfrc)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •When Stress Is Good:
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Post-Tensioned Slabs
- •Active Vocabulary
- •Test II
- •Test III
- •Test IV
- •Why Does Concrete Crack?
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Working with Versatile Lightweight Concrete
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •What is Fly Ash Concrete?
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Concrete Mix with Fly Ash
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Steel Building Designs – Flexibility and Innovation (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Steel Building Advantages (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •What is Tilt-up Construction? (Part I)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Precast Concrete, Tilt-up Construction and Tiltwall: What's the Difference in These Terms? (Part II)
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Environmental engineering
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Concrete: a Sustainable Construction Material that can Help Fight Climate Change
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Sustainable Building
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Active Vocabulary
- •Control tests test I
- •Test II
- •Test III
- •Test IV
- •Final tests test I
- •Test II
- •Test III
- •Test IV
- •References to video files
- •The Concrete Construction Process (Part 3)
- •When Stress Is Good:
- •Flexibility and Innovation
- •What's the Difference in These Terms?
- •That can Help Fight Climate Change
- •1. “Sustainable Home”
- •2. “Innovations in Green Home Building”
- •(Heating, ventilating and air conditioning)
- •Glossary of construction terms Construction Terms Beginning With Letter a
- •Construction Terms Beginning With Letter b
- •Construction Terms Beginning With Letter c
- •Construction Terms Beginning With Letter d
- •Construction Terms Beginning With Letter e
- •Construction Terms Beginning With Letter f
- •Construction Terms Beginning With Letter g
- •Construction Terms Beginning With Letter h
- •Construction Terms Beginning With Letter I
- •Construction Terms Beginning With Letter j
- •Construction Terms Beginning With Letter k
- •Construction Terms Beginning With Letter l
- •Construction Terms Beginning With Letter m
- •Construction Terms Beginning With Letter n
- •Construction Terms Beginning With Letter o
- •Construction Terms Beginning With Letter p
- •Construction Terms Beginning With Letter q
- •Construction Terms Beginning With Letter r
- •Construction Terms Beginning With Letter s
- •Construction Terms Beginning With Letter t
- •Construction Terms Beginning With Letter u
- •Construction Terms Beginning With Letter V
- •Construction Terms Beginning With Letter w
- •Construction Terms Beginning With Letter y
- •Construction Terms Beginning With Letter z
- •Библиография
- •Электронные ресурсы
When Stress Is Good:
Pre- and Post-Tensioned Concrete
Read, translate the following text and be ready to fulfil the tests:
Portland cement concrete is a strong, dependable and relatively inexpensive construction material. Until it is stressed under tension, that is. It typically exhibits only about 15% of its equivalent compressive strength, which can spell catastrophe for structural applications. The first use of material most similar to modern concrete was by Roman engineers and was known as opus caementicium. The Pantheon still stands today as the largest un-reinforced concrete dome in the world. Presumably they also discovered very quickly that the material failed catastrophically in attempts to use it in tensile structural applications.
Pre-tensioning
In pre-tensioned concrete tensile elements such as cables, ribbons, or rods are clamped under calculated tensile stress. Concrete is cast around these elements and allowed to cure. When fully hardened the clamps are released and the stress is transferred within the rigid concrete. Only in this case the tensile elements are not holding the structure together, rather they act to place the concrete into a state of compressive stress prior to load application. When a load is applied within the design limit, the concrete structural piece will never see tensile stress of sufficient magnitude to cause failure.
Post-tensioning
Unbonded post-tensioning is accomplished by coating the tensile elements with lubricant and covering them with extruded polymer sleeves. These are then arranged within the concrete molding form with the ends of the tensile elements attached to anchors placed at the perimeter of the casting. Since the tensile elements are free to move within the casting, when curing is complete they can be pulled into tension and clamped to the embedded anchors at the edges of the piece. Once again the concrete is placed into a preloaded compressive state of stress by the tensioned elements. Unlike pre-tensioning, however, the post-tensioned elements can catastrophically pull out of the casting if the anchors fail or unskilled repairs are attempted. However they can also be adjusted to compensate for changes in loading or field conditions. Finally, bonded post-tensioning utilizes conduits placed into the concrete molding form. The tensioning elements are threaded through the conduits before the concrete is cast. Once curing is complete, the elements are pulled into tension and clamped or wedged at the conduit openings to hold the applied tensile stress. These elements are then grouted into place at the openings to permanently bond them with the structural casting.
Rise of Precast Concrete
First used in 1928, prestressed concrete has led to an explosion of applications in buildings, bridges, slabs, foundations, and roadways, and has driven development of the precast concrete industry. Although the cost is typically greater that standard reinforced concrete the increase in structural performance can more than offset the additional expense. Lighter, stronger, longer lasting, and requiring fewer joints, prestressed concrete construction materials have shown how good stress can be.
Read and memorize the active vocabulary to the text:
