- •Содержание
- •Общая характеристика курса лекций «химическая фихика энергонасыщенных материалов»
- •1. Цели и задачи изучения дисциплины
- •Всего часов на самостоятельную работу 45
- •2. Лабораторный практикум
- •Лекция № 1. Чувствительность, начальный импульс. Классификация начальных импульсов.
- •Практическое значение чувствительности, её роль
- •Классификация начальных импульсов
- •Специфичность чувствительности эм к различным импульсам.
- •Опорный ряд чувствительности.
- •Влияние различных факторов на чувствительность. Влияние химической структуры на чувствительность эм.
- •1 Химическая структура вв.
- •Лекция № 2. Влияние физических факторов на чувствительность эм.
- •2.1 Влияние физических факторов на чувствительность вм
- •2.2 Влияние добавок и примесей. Флегматизация и сенсибилизация
- •Лекция № 3. Характер поведения эм при длительном тепловом воздействии. Тепловой взрыв. Вспышка, механизм её возникновения
- •3.1 Характер поведения эм при длительном тепловом воздействии
- •2.2 Вспышка, механизм её возникновения. Тепловой взрыв
- •2.4 Характер поведения эм при импульсном тепловом воздействии. Воспламенение эм. Условия воспламенения. Теплота воспламенения. Чувствительность к лучу огня.
- •Лекция № 4. Механизм возбуждения взрыва при механических воздействиях. Сущность теплового и нетеплового механизмов при возбуждении взрыва механическими воздействиями
- •4.1 Механизм возбуждения взрыва при механических воздействиях
- •4.1.2 Сущность теплового и нетеплового механизмов при возбуждении взрыва механическими воздействиями
- •4.1.3 Величина критических параметров локального очага
- •4.1.4 Стадии развития процесса. Причины образования локальных очагов разогрева
- •4.1.5 Распространение взрывчатого превращения из очага
- •Лекция № 5. Экспериментальные методы оценки чувствительности к механическим воздействиям
- •5.1 Методы определения чувствительности к удару, способы оценки и приборы: к-44_1; к-44-2; бк-6
- •5.1.1 Проведение испытаний на копре k-44-1
- •5.1.2 Проведение испытаний на копре к- 44- 2
- •5.1.3 Проведение испытаний на копре на большом копре (бк)
- •5.1.4 Проведение испытаний на копре Велера
- •5.2 Чувствительность к трению
- •Лекция 6. Чувствительность эм к ударно-волновым воздействиям
- •5.1 Чувствительность к ударно-волновым воздействиям
- •5.1.1 Минимальный инициирующий заряд ивв
- •5.1.2 Детонация через влияние
- •5.2 Чувствительность энергетических систем к электрическому импульсу.
- •Лекция № 7. Горение как физико-химический процесс. Необходимые и достаточные условия для возникновения горения
- •7.1 Горение как физико-химический процесс
- •1. Путем нагрева всей газовой смеси.
- •1. Примеси.
- •С хема распространения температуры и протекания реакции при стационарном горении летучих вв по Беляеву.
- •Лекция № 8 Линейная и массовая скорости горения. Зависимость скорости горения от различных факторов
- •8.1 Линейная и массовая скорости горения
- •8.2 Зависимость скорости горения от различных факторов
- •8.3 Зависимость массовой скорости горения от тепло-и массопереноса (уравнение Зельдовича)
- •Лекция № 9. Механизм и закономерности горения порохов.
- •9.1 Механизм и закономерности горения порохов.
- •9.2 Экспериментальные методы определения скорости горения.
- •9.2.1 Бомба постоянного давления (бомба Кроуфорда).
- •9.2.2 Лабораторная установка по определению скорости горения порохов или твердого ракетного топлива
- •9.2.3 Манометрическая бомба.
- •9.2.4 Современные методы измерения и обработки параметров горения энергетических материалов
- •Лекция № 10. Нестационарное послойное горение. Конвективное горение
- •10.1 Условия нарушения устойчивого горения. Особенности конвективного горения
- •10.2 Особенности кг
- •Лекция № 11. Ударная волна, её особенности, отличие от звуковых волн.
- •11.1 Особенности ударной волны.
- •Лекция № 12. Структура детонационной волны, поверхность Чепмена-Жуге.
- •12.1 Структура детонационной волны
- •12.2 Возбуждение и распространение детонации в конденсированном вв
- •12.3 Зависимость скорости детонации от различных факторов.
- •1) Химическое строение и химический состав вв.
- •2) Плотность.
- •3) Температура и давление.
- •4) Примеси.
- •5) Диаметр.
- •Лекция № 13. Критический и предельный диаметры детонации. Принцип харитона
- •13.1 Детонационная способность вв. Критический диаметр, принцип Харитона.
- •13.2 Методы определения критического диаметра и толщины.
- •13.3 Принцип Харитона
- •13.4 Экспериментальные методы определения параметров детонации
- •1) Определение критического диаметра
- •2) Определение скорости детонации.
- •4) Оценка давлений в ударных и детонационных волнах.
- •Лекция № 14. Этапы перехода горения в детонацию, направленность процесса
- •14.1 Условия нарушения устойчивого горения. Особенности конвективного горения
- •14.2 Особенности кг
- •14.3 Газодинамические условия устойчивого горения.
- •Дополнительный материал по теме «Переход горения в детонацию»
- •Раздел 4 – детонация
- •4.1 История открытия процесса детонации
- •4.2 Возникновение и распространение детонации. Влияние различных факторов.
- •4.3 Пределы детонации
- •Лекция № 15. Баланс энергии при взрыве. Потенциал эм. Основные формы совершаемой работы
- •15.1 Действие взрыва на окружающую среду
- •15.2 Потенциал вв
- •15.3 Поле взрыва заряда вв
- •Лекция № 16. Бризантное действие эм, теоретическая оценка бризантности, её зависимость от свойств заряда и условий воздействия на преграду.
- •16.1 Бризантное действие
- •16.2 Применение бризантного действия взрыва вв. 1. Сварка взрывом
- •Штамповка взрывом
- •Проба Гесса.
- •Проба Каста
- •Лекция № 17. Фугасное действие эм. Показатель выброса грунта. Воронка выброса. Расчет зарядов выброса.
- •17.1 Фугасное действие вм
- •17.2 Практические методы определения работоспособности
- •Метод баллистической мортиры.
- •Метод оценки работоспособности по воронке выброса.
- •Лекция № 18. Кумулятивная выемка, природа кумуляции. Действие кумулятивного заряда с металлической оболочкой.
- •18.1 Кумулятивная выемка, кумулятивный эффект
- •Мировая история развития кумулятивных боеприпасов
- •18.1.1 Разлет продуктов детонации с косой поверхности
- •18.1.2 Кумулятивная выемка и природа кумуляции.
- •18.1.3 Действие кумулятивного заряда с металлической оболочкой.
1. Примеси.
Примеси, сужающие КП или даже делающие смесь вообще неспособной к горению (галоидные производные углеводородов);
Примеси расширяющие КП – катализаторы реакций окисления;
Инертные примеси – способные несколько сужать КП, т.к. отбирают на себя часть тепла (избыток горючего или окислителя играет роль инертной примеси).
2. Давление и температура (с увеличением параметра они, как правило, расширяются).
3. Природа окислителя, чем окислитель активнее, тем шире КП.
4. Размеры сосуда, в котором находится ГГС. Влияние размеров сосуда связано с охлаждающим действием стенок сосуда.
Например: метан в воздухе может гореть только при содержании от 5 до 15% весовых.
С хема распространения температуры и протекания реакции при стационарном горении летучих вв по Беляеву.
Рис. 2.
Концентрационные пределы газовых
горючих систем
Лекция № 8 Линейная и массовая скорости горения. Зависимость скорости горения от различных факторов
8.1 Линейная и массовая скорости горения
Основной характеристикой горения является скорость горения. Различают нормальную (линейную) и массовую скорости горения.
Под нормальной скоростью понимают Uн. – линейную скорость перемещения фронта горения в направлении перпендикулярном поверхности горения:
Uн=ℓ/τ [см/с]
Массовая скорость горения Um – это количество исходной горючей системы, сгоревшей в единицу времени с единицы поверхности фронта горения.
Um=Uн × p0[г/см2×с]
8.2 Зависимость скорости горения от различных факторов
Линейная и массовая скорость горения зависит от:
геометрических размеров заряда (диаметра);
внешних условий (температуры и давления);
дисперсности ГС (размера частиц);
наличия примесей.
Для смесевых систем дополнительно оказывают влияние:
химическая природа компонентов, их теплофизические характеристики;
соотношение компонентов и дисперсность каждого из них.
Горение происходит в результате передачи соседнему слою тепла, выделившегося в реагирующем слое. Одновременно с выделением тепла происходят потери его в окружающую среду.
Горение протекает стационарно лишь в том случае, если количество тепла, отдаваемое соседнему слою, и теплопотери уравновешиваются теплоприходом за счет реакции.
Если суммарная теплоотдача становится больше, чем теплоприход, то горение оказывается не возможным.
При уменьшении диаметра заряда количество тепла, выделяемого в единицу времени, уменьшается пропорционально квадрату диаметра. Теплоотдача также уменьшается, но медленнее- она пропорциональна поверхности теплоотвода, т.е. первой степени диаметра. При некотором значении диаметра теплоприход не может компенсировать теплопотери и горение затухает.
Критическим диаметром горения называют минимальный диаметр, при котором ещё возможно горение. Критический диаметр не постоянная величина, он зависит не только от природы ВВ, но и от условий горения, в первую очередь от давления, начальной температуры, плотности заряда и дисперсности кристаллов.
● Повышение температуры и давления снижают критический диаметр горения, увеличивают скорость горения, уменьшают потери в окружающую среду.
Для учета влияния температуры заряда на скорость горения существует ряд эмпирических выражений типа:
U=U0 × exp[B(T-T0)],
где В – температурный коэффициент, он зависит от свойства ВМ и равен: В=(0,8÷1,4) ×10-3, град-1.
Своеобразное влияние на возможность горения оказывает плотность порошкообразных ВВ.
Так, плавящиеся ВВ (тетрил) затухают при уменьшении плотности до некоторого значения, неплавящиеся ВВ (нитроклетчатка) могут затухать при увеличении плотности выше максимальной величины. И в том, и в другом случае причиной затухания является увеличение теплоотвода из зоны реакции в исходное ВВ и снижение температуры и скорости реакции (за счет проникновения расплава в пористое вещество и за счет увеличения теплопроводности соответственно).
Как правило, создание предельных условий приводит к неустойчивому пульсирующему горению. При этом слабо прогретый слой ВМ саморазогревается, вспыхивает, отдает тепло следующему слою и т.д.
