Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК математика Зоо.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
3.83 Mб
Скачать

Контрольная работа № 3

Вариант первый.

  1. В партии из 100 ламп имеется 30 бракованных. Наудачу отбираются 3 лампы. Найти вероятность того, что: 1) все 3 отобранные лампы бракованные; 2) среди отобранных ламп имеется одна бракованная.

  2. В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30% - с заболеванием I и 20% -заболеванием М. Вероятность полного излечения болезни К равна 0,7; болезни I - 0,8 и болезни М - 0,9. Больной, поступивший в больницу был выписан здоровым. Найти вероятность того, что этот больной страдал заболеванием К.

  3. Стрелок поражает мишень с одинаковой вероятностью 2/3 в каждом выстреле. Сделано три выстрела. Дискретная случайная величина X- число попаданий в мишень. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

1,0

1,2

1,3

1,4

1,5

1,6

yi

17,0

21,5

22,0

23,8

25,0

26,5

Вариант второй

  1. В пачке из 12 общих тетрадей имеется 7 тетрадей в клетку и 5 линейку. Наугад отобрано 6 тетрадей. Найти вероятность того, что:1) среди них будет одинаковое количество тетрадей в клетку и в линейку; 2) среди них будут тетради только в клетку.

  2. В ящике сложены детали: 16 деталей с первого участка, 24 со второго и 20 с третьего. Вероятность того, что деталь, изготовленная на втором участке, отличного качества, равна 0,6 а для деталей ,изготовленных на первом и третьем участках, эти вероятности равны 0,8. Найти вероятность того, что наудачу извлечённая деталь окажется отличного качества.

  3. Брошены три монеты. Дискретная случайная величина X - число выпадения герба при бросании трех монет. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

1,0

1,2

1,4

1,6

1,8

2,0

yi

0,9

1,8

2,1

2,9

3,3

3,4

Вариант третий

  1. В коробке имеется 5 одинаковых изделий, причем 3 из них окрашены. Наудачу вынуты 2 изделия. Найти вероятность того, что среди вынутых изделий: 1) одно окрашенное; 2) оба окрашенных.

  2. В одной урне 5 белых и 6 черных шаров, а в другой урне 4 белых и 8 черных шаров. Из первой урны наудачу вынимают 3 шара опускают во вторую урну. После этого из второй урны наудачу вынимают 4 шара. Найти вероятность того, что все вынутые из второй урны шары - белые.

  3. Устройство состоит из трех независимо работающих элементов. Вероятность безотказной работы в течении определенного периода времени для первого элемента равна 0,8; для второго - 0,6; для третьего -- 0,5. Дискретная случайная величина X - число элементов устройства, безотказно работающих в течении данного периода времени. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

0,2

0,6

1,0

1,4

1,8

2,2

yi

4,5

8,5

11,0

12,8

17,0

18,0

Вариант четвертый

  1. В ящике 100 деталей, из них 10 бракованных. Наудачу извлечены 4 детали. Найти вероятность того, что среди вынутых деталей: 1) нет бракованных; 2) нет годных.

  2. В первом ящике имеются 8 белых и 6 чёрных шаров, а во втором 10 белых и 4 чёрных. Наугад выбирают ящик и шар. Известно, что вынутый шар чёрный. Найти вероятность того, что был выбран первый ящик.

  3. В урне 4 белых и 8 черных шаров. Вынули два шара. Дискретная случайная величина X- число вынутых белых шаров. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

2

4

6

8

10

12

yi

3,2

7,8

11,2

13,0

19,1

23,6

Вариант пятый

  1. В ящике 30 исправных предохранителей и 5 с дефектами. Необходимо заменить 3 предохранителя, которые выбираются наудачу их ящика. Найти вероятность того, что: 1) все 3 выбранных предохранителя исправны; 2) один предохранитель оказался с дефектом.

  2. Из двух близнецов первым родился мальчик. Какова вероятность того, что вторым тоже родится мальчик, если среди близнецов вероятность рождения двух мальчиков равна p, а вероятность рождения двух девочек равна q, а для разнополых близнецов вероятность родиться первым для обоих полов одинакова?

  3. Брошено три игральных кости. Дискретная случайная величина Xчисло появления шестерки. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

-0,2

0,3

0,6

0,9

1,1

1,4

yi

-0,3

0,5

0,8

2,0

2,1

3,1

Вариант щестой

  1. В урне находятся 3 белых, 4 черных и 5 красных шаров. Найти вероятность того, что: 1) вынутый наудачу шар белый; 2)вынутый наудачу шар черный; 3) вынутый наудачу шар желтый; 4)вынутый наудачу шар красный; 5) среди двух вынутых наудачу шаров один будет белым.

  2. Из 18 стрелков 5 попадают в мишень с вероятностью 0,8; 7 -с вероятностью 0,7; 4 - с вероятностью 0,6 и 2 - с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежал этот стрелок? (Найти условные вероятности всех-гипотез).

  3. Вероятность того, что саженец груши приживется равна 0,8; яблони - 0,9. Куплено два саженца груши и один - яблони. Дискретная случайная величинаX-число прижившихся саженцев. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

0,5

1,0

2,0

2,7

3,5

4,0

yi

3,8

5,8

6,9

9,8

10,3

13,1

Вариант седьмой

  1. В группе 12 студентов, среди которых 8 отличников. По списку наугад отобрано 9 студентов. Найти вероятность того, что среди отобранных студентов: 1) 5 отличников; 2) 8 отличников.

  2. При переливании крови надо учитывать группу крови донора и больного. Человеку, имеющему четвертую группу крови, можно перелить кровь любой группы; человеку со второй или третьей группой крови можно перелить кровь либо той же группы, либо первой; человеку с первой группой крови можно перелить кровь только первой группы. Среди населения города 33,7% имеют первую группу крови, 37,5% - вторую, 20,9% - третью, 7,9% - четвертую. Найти вероятность того, что случайно взятому больному можно перелить кровь случайно взятого донора.

  3. Два стрелка делают по одному выстрелу в одну мишень. Вероятность попадания в мишень для первого стрелка равна 0,5, для второго - 0,4. Дискретная случайная величина Xчисло попаданий в мишень. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

-3

-2

-1

0,1

1

2

yi

11,2

3,9

0,8

-5,1

-5,7

-10,1

Вариант восьмой

  1. В урне находятся 12 белых и 8 красных шаров. Найти вероятность того, что: 1) среди двух вынутых наудачу шаров будет один белый шар; 2) среди вынутых наудачу 8 шаров будет 3 красных.

  2. На двух автоматах производятся одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата втрое больше производительности второго. Первый автомат в среднем производит 80% деталей первого сорта, а второй - 90%. Взятая наудачу с конвейера деталь оказалась первого сорта. Найти вероятность того, что эта деталь произведена первым автоматом.

  3. В партии из 6 деталей имеется 4 стандартных. Наудачу отобрано три детали. Дискретная случайная величина Xчисло стандартных деталей среди отобранных. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

0,3

0,8

1,2

1,7

2,2

2,7

yi

0,7

1,7

1,6

3,1

3,3

4,6

Вариант девятый

  1. В цехе работают 6 мужчин и 4 женщины. Наудачу отбираются 7 человек. Найти вероятность того, что среди отобранных будет: 1)3 женщины; 2) 6 мужчин.

  2. Агентство по страхованию автомобилей разделяет водителей по трем классам: класс H1, (мало рискует), класс H2 (рискует средне), класс H3 (рискует сильно). Агентство предполагает, что из всех водителей, застраховавших автомобили, 30% принадлежат к кассу H1 50% - к классу H2, 20% - к классу H3. Вероятность того, что в течение года водитель класса H1, попадет в хотя бы одну аварию, равна 0,01; для водителя класса H2 - 0,02; для водителя класса H3 - 0,08. Некоторый водитель страхует свою машину и в течение года попадает в аварию. Найти вероятность того, что этот водитель принадлежит классу: 1)H1; 2)H2; 3)H3.

  3. Улов состоит из 60 рыб, среди которых 10 имеют вес, меньший требуемого. Наугад отобрано пять экземпляров. Дискретная случайная величина X - число отобранных рыб, имеющих вес меньше требуемого. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

1,1

1,3

1,5

1,6

1,9

2,1

yi

2,6

5,0

5,4

6,1

6,6

7,9

Вариант десятый

  1. Устройство состоит из 5 элементов, из которых 2 изношены. При включении устройства случайным образом включаются 2 элемента. Найти вероятность того, что: 1) включенными окажутся неизношенные элементы; 2) включатся один изношенный и один неизношенный

  2. Имеются три партии деталей по 30 штук в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 30, 25 и 20. Из произвольно выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию, а затем вторично наудачу извлекают деталь, которая также оказывается стандартной. Найдите вероятность того, что детали были извлечены из третьей партии.

  3. На пути движения лосося к месту нереста находится 4 шлюза. Вероятность прохода лосося через каждый шлюз равна 3/5. Дискретная случайная величина X -- число шлюзов, пройденных лососем до первого задержания у шлюза. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.

  4. По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.

xi

1,0

1,1

1,3

1,5

1,6

1,7

yi

16,5

21,5

22,0

24,0

24,5

27,0