- •Математика
- •Рабочая программа
- •Место дисциплины в структуре ооп впо
- •1.2. Цели освоения дисциплины
- •1.3. Требования к результатам освоения дисциплины
- •1.4. Образовательные результаты освоения дисциплины, соответствующие определенным компетенциям
- •2. Объем дисциплины и виды учебной работы
- •3. Матрица соотнесения разделов/тем учебной дисциплины и формируемых в них профессиональных и общекультурных компетенций
- •4. Содержание дисциплины
- •4.2. Лабораторный практикум (планы семинарских и практических занятий)
- •Тема 1. Дифференциальное исчисление
- •Тема 2 Интегральное исчисление.
- •Тема 3. Комплексные числа.
- •Тема 4. Дифференциальные уравнения
- •Тема 5. Ряды
- •Тема 6. Теория вероятностей
- •Тема 7. Математическая статистика.
- •4.3. Примерный перечень вопросов, заданий, тестов для экзамена
- •4.3.1. Примерный перечень вопросов для экзамена
- •4.4.Перечень вопросов, заданий, тестов для зачета/ экзамена:
- •Типовой тест по математике (начальный уровень)
- •6. Самостоятельная работа обучающегося бакалавра
- •6.1. Виды срс
- •6.2. График самостоятельной работы обучающихся
- •8. Учебно-методическое и информационное обеспечение учебной дисциплины (модуля)
- •9. Материально-техническое обеспечение дисциплины (модуля)
- •§ 1. Предел функции.
- •Упражнения.
- •§ 2. Дифференциальное исчисление функции одной переменной.
- •Производная сложной функции
- •§ 3. Функции нескольких переменных.
- •3.1 Метод наименьших квадратов
- •§4. Интегральное исчисление
- •4.1 Неопределенный интеграл
- •Неопределенный интеграл алгебраической суммы конечного числа функций равен алгебраической сумме неопределенных интегралов этих функций
- •4.2 Определенный интеграл и его приложения
- •4.3 Приложения определенного интеграла
- •§ 5. Дифференциальные уравнения.
- •5.1 Дифференциальные уравнения первого порядка
- •§ 6. Ряды.
- •6.1 Числовые ряды
- •6.2. Знакочередующиеся ряды
- •6.3.Функциональные ряды
- •Степенные ряды
- •§ 7. Основы теории вероятностей.
- •7.1. Элементы комбинаторики.
- •7.2. Классическое определение вероятности.
- •7.3. Основные теоремы теории вероятностей.
- •7.4. Повторение независимых испытаний.
- •7.5.1. Дискретная случайная величина.
- •7.5.2. Непрерывная случайная величина.
- •7.6. Закон больших чисел.
- •§ 8. Математическая теория выборочного метода
- •§ 9. Элементы теории корреляций
- •§10. Варианты контрольных работ Контрольная работа № 1
- •Контрольная работа № 2
- •Контрольная работа № 3
- •§11. Контрольные тесты Контрольный тест по линейной алгебре Контрольные тесты по теме «Дифференциальные исчисления»
- •Контрольный тест по теме «Ряды»
- •Контрольный тест по теории вероятностей
- •Вопросы к экзаменам
- •Глоссарий
- •Гид по курсу
Контрольная работа № 3
Вариант первый.
В партии из 100 ламп имеется 30 бракованных. Наудачу отбираются 3 лампы. Найти вероятность того, что: 1) все 3 отобранные лампы бракованные; 2) среди отобранных ламп имеется одна бракованная.
В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30% - с заболеванием I и 20% -заболеванием М. Вероятность полного излечения болезни К равна 0,7; болезни I - 0,8 и болезни М - 0,9. Больной, поступивший в больницу был выписан здоровым. Найти вероятность того, что этот больной страдал заболеванием К.
Стрелок поражает мишень с одинаковой вероятностью 2/3 в каждом выстреле. Сделано три выстрела. Дискретная случайная величина X- число попаданий в мишень. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
1,0 |
1,2 |
1,3 |
1,4 |
1,5 |
1,6 |
yi |
17,0 |
21,5 |
22,0 |
23,8 |
25,0 |
26,5 |
Вариант второй
В пачке из 12 общих тетрадей имеется 7 тетрадей в клетку и 5 линейку. Наугад отобрано 6 тетрадей. Найти вероятность того, что:1) среди них будет одинаковое количество тетрадей в клетку и в линейку; 2) среди них будут тетради только в клетку.
В ящике сложены детали: 16 деталей с первого участка, 24 со второго и 20 с третьего. Вероятность того, что деталь, изготовленная на втором участке, отличного качества, равна 0,6 а для деталей ,изготовленных на первом и третьем участках, эти вероятности равны 0,8. Найти вероятность того, что наудачу извлечённая деталь окажется отличного качества.
Брошены три монеты. Дискретная случайная величина X - число выпадения герба при бросании трех монет. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
1,0 |
1,2 |
1,4 |
1,6 |
1,8 |
2,0 |
yi |
0,9 |
1,8 |
2,1 |
2,9 |
3,3 |
3,4 |
Вариант третий
В коробке имеется 5 одинаковых изделий, причем 3 из них окрашены. Наудачу вынуты 2 изделия. Найти вероятность того, что среди вынутых изделий: 1) одно окрашенное; 2) оба окрашенных.
В одной урне 5 белых и 6 черных шаров, а в другой урне 4 белых и 8 черных шаров. Из первой урны наудачу вынимают 3 шара опускают во вторую урну. После этого из второй урны наудачу вынимают 4 шара. Найти вероятность того, что все вынутые из второй урны шары - белые.
Устройство состоит из трех независимо работающих элементов. Вероятность безотказной работы в течении определенного периода времени для первого элемента равна 0,8; для второго - 0,6; для третьего -- 0,5. Дискретная случайная величина X - число элементов устройства, безотказно работающих в течении данного периода времени. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
0,2 |
0,6 |
1,0 |
1,4 |
1,8 |
2,2 |
yi |
4,5 |
8,5 |
11,0 |
12,8 |
17,0 |
18,0 |
Вариант четвертый
В ящике 100 деталей, из них 10 бракованных. Наудачу извлечены 4 детали. Найти вероятность того, что среди вынутых деталей: 1) нет бракованных; 2) нет годных.
В первом ящике имеются 8 белых и 6 чёрных шаров, а во втором 10 белых и 4 чёрных. Наугад выбирают ящик и шар. Известно, что вынутый шар чёрный. Найти вероятность того, что был выбран первый ящик.
В урне 4 белых и 8 черных шаров. Вынули два шара. Дискретная случайная величина X- число вынутых белых шаров. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
2 |
4 |
6 |
8 |
10 |
12 |
yi |
3,2 |
7,8 |
11,2 |
13,0 |
19,1 |
23,6 |
Вариант пятый
В ящике 30 исправных предохранителей и 5 с дефектами. Необходимо заменить 3 предохранителя, которые выбираются наудачу их ящика. Найти вероятность того, что: 1) все 3 выбранных предохранителя исправны; 2) один предохранитель оказался с дефектом.
Из двух близнецов первым родился мальчик. Какова вероятность того, что вторым тоже родится мальчик, если среди близнецов вероятность рождения двух мальчиков равна p, а вероятность рождения двух девочек равна q, а для разнополых близнецов вероятность родиться первым для обоих полов одинакова?
Брошено три игральных кости. Дискретная случайная величина X— число появления шестерки. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
-0,2 |
0,3 |
0,6 |
0,9 |
1,1 |
1,4 |
yi |
-0,3 |
0,5 |
0,8 |
2,0 |
2,1 |
3,1 |
Вариант щестой
В урне находятся 3 белых, 4 черных и 5 красных шаров. Найти вероятность того, что: 1) вынутый наудачу шар белый; 2)вынутый наудачу шар черный; 3) вынутый наудачу шар желтый; 4)вынутый наудачу шар красный; 5) среди двух вынутых наудачу шаров один будет белым.
Из 18 стрелков 5 попадают в мишень с вероятностью 0,8; 7 -с вероятностью 0,7; 4 - с вероятностью 0,6 и 2 - с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежал этот стрелок? (Найти условные вероятности всех-гипотез).
Вероятность того, что саженец груши приживется равна 0,8; яблони - 0,9. Куплено два саженца груши и один - яблони. Дискретная случайная величинаX-число прижившихся саженцев. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
0,5 |
1,0 |
2,0 |
2,7 |
3,5 |
4,0 |
yi |
3,8 |
5,8 |
6,9 |
9,8 |
10,3 |
13,1 |
Вариант седьмой
В группе 12 студентов, среди которых 8 отличников. По списку наугад отобрано 9 студентов. Найти вероятность того, что среди отобранных студентов: 1) 5 отличников; 2) 8 отличников.
При переливании крови надо учитывать группу крови донора и больного. Человеку, имеющему четвертую группу крови, можно перелить кровь любой группы; человеку со второй или третьей группой крови можно перелить кровь либо той же группы, либо первой; человеку с первой группой крови можно перелить кровь только первой группы. Среди населения города 33,7% имеют первую группу крови, 37,5% - вторую, 20,9% - третью, 7,9% - четвертую. Найти вероятность того, что случайно взятому больному можно перелить кровь случайно взятого донора.
Два стрелка делают по одному выстрелу в одну мишень. Вероятность попадания в мишень для первого стрелка равна 0,5, для второго - 0,4. Дискретная случайная величина X – число попаданий в мишень. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
-3 |
-2 |
-1 |
0,1 |
1 |
2 |
yi |
11,2 |
3,9 |
0,8 |
-5,1 |
-5,7 |
-10,1 |
Вариант восьмой
В урне находятся 12 белых и 8 красных шаров. Найти вероятность того, что: 1) среди двух вынутых наудачу шаров будет один белый шар; 2) среди вынутых наудачу 8 шаров будет 3 красных.
На двух автоматах производятся одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата втрое больше производительности второго. Первый автомат в среднем производит 80% деталей первого сорта, а второй - 90%. Взятая наудачу с конвейера деталь оказалась первого сорта. Найти вероятность того, что эта деталь произведена первым автоматом.
В партии из 6 деталей имеется 4 стандартных. Наудачу отобрано три детали. Дискретная случайная величина X – число стандартных деталей среди отобранных. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
0,3 |
0,8 |
1,2 |
1,7 |
2,2 |
2,7 |
yi |
0,7 |
1,7 |
1,6 |
3,1 |
3,3 |
4,6 |
Вариант девятый
В цехе работают 6 мужчин и 4 женщины. Наудачу отбираются 7 человек. Найти вероятность того, что среди отобранных будет: 1)3 женщины; 2) 6 мужчин.
Агентство по страхованию автомобилей разделяет водителей по трем классам: класс H1, (мало рискует), класс H2 (рискует средне), класс H3 (рискует сильно). Агентство предполагает, что из всех водителей, застраховавших автомобили, 30% принадлежат к кассу H1 50% - к классу H2, 20% - к классу H3. Вероятность того, что в течение года водитель класса H1, попадет в хотя бы одну аварию, равна 0,01; для водителя класса H2 - 0,02; для водителя класса H3 - 0,08. Некоторый водитель страхует свою машину и в течение года попадает в аварию. Найти вероятность того, что этот водитель принадлежит классу: 1)H1; 2)H2; 3)H3.
Улов состоит из 60 рыб, среди которых 10 имеют вес, меньший требуемого. Наугад отобрано пять экземпляров. Дискретная случайная величина X - число отобранных рыб, имеющих вес меньше требуемого. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
1,1 |
1,3 |
1,5 |
1,6 |
1,9 |
2,1 |
yi |
2,6 |
5,0 |
5,4 |
6,1 |
6,6 |
7,9 |
Вариант десятый
Устройство состоит из 5 элементов, из которых 2 изношены. При включении устройства случайным образом включаются 2 элемента. Найти вероятность того, что: 1) включенными окажутся неизношенные элементы; 2) включатся один изношенный и один неизношенный
Имеются три партии деталей по 30 штук в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 30, 25 и 20. Из произвольно выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию, а затем вторично наудачу извлекают деталь, которая также оказывается стандартной. Найдите вероятность того, что детали были извлечены из третьей партии.
На пути движения лосося к месту нереста находится 4 шлюза. Вероятность прохода лосося через каждый шлюз равна 3/5. Дискретная случайная величина X -- число шлюзов, пройденных лососем до первого задержания у шлюза. Найти закон распределения данной дискретной случайной величины X, а так же числовые характеристики (математическое ожидание, дисперсию и среднее квадратическое отклонение) этой случайной величины и построить многоугольник распределения.
По данным значениям величин xi и yi , предполагая наличие линейной зависимости между ними, установить тесноту этой связи, вычислив выборочный коэффициент корреляции, а также найти уравнение линейной регрессии Y на X . Построить график вычисленной линейной зависимости и эмпирических точек.
xi |
1,0 |
1,1 |
1,3 |
1,5 |
1,6 |
1,7 |
yi |
16,5 |
21,5 |
22,0 |
24,0 |
24,5 |
27,0 |
