- •Содержание
- •Лабораторная работа № 1. «Уравнение Бернулли для установившегося потока вязкой жидкости»
- •1.1. Теоретический раздел
- •1.1.1 Основные положения
- •1.1.2 Программа исследования
- •1.2 Порядок выполнения экспериментальных исследований
- •1.3 Содержание отчета
- •1.4 Контрольные вопросы
- •Лабораторная работа №2. «Исследование РежимОв движения жидкости»
- •2.1 Теоретический раздел
- •2.1.1 Основные положения
- •2.1.2 Описание лабораторной установки
- •2.2 Порядок выполнения экспериментальных исследований
- •2.3 Содержание отчета
- •2.4 Контрольные вопросы
- •2.5 Библиографический список
- •Лабораторная работа №3. «Экспериментальное исследование коэффициента гидравлического трения»
- •3.1 Теоретический раздел
- •3.1.1 Основные положения
- •3.2 Порядок выполнения экспериментальных исследований
- •3.3. Содержание отчета
- •3.4. Контрольные вопросы
- •3.5. Библиографический список
- •Лабораторная работа №4. «Экспериментальное исследование коэффициентов местных гидравлических сопротивлений»
- •4.1 Теоретический раздел
- •4.1.1 Общие положения
- •4.2 Порядок выполнения экспериментальных исследований
- •4.3 Содержание отчета
- •4.4 Контрольные вопросы
- •4.5 Библиографический список
- •Лабораторная работа №5. «Определение статической характеристики усилителя типа сопло-заслонка»
- •5.1 Теоретический раздел
- •5.1.1 Общие положения
- •5.1.2 Программа исследования
- •5.2 Указания к проведению работы
- •5.3 Содержание отчета
- •5.4 Контрольные вопросы
- •5.5 Библиографический список
- •Лабораторная работа №6. «Исследование автоматизированного гидравлического привода»
- •6.1 Теоретический раздел
- •6.1.1 Общие сведения
- •6.1.2. Программа исследования
- •6.2 Указания по проведению работы
- •6.3 Содержание отчета
- •6.4 Контрольные вопросы
- •6.5 Библиографический список
- •Лабораторная работа №7. «Исследование основных характеристик гидравлического шестеренчатого насоса»
- •7.1 Теоретический раздел
- •7.1.1 Основные сведения
- •Программа исследования
- •7.2 Указания по проведению работы
- •7.3 Содержание отчета
- •7.4 Контрольные вопросы
- •7.5 Библиографический список
- •Лабораторная работа №8. «Исследование процесса преобразования энергии сжатого воздуха в механическую работу на примере линейного пневматического привода»
- •8.1 Теоретический раздел
- •8.1.1 Общие положения
- •8.1.2 Программа исследования
- •8.2 Указания к проведению работы
- •8.3 Содержание отчета
- •8.4 Контрольные вопросы
- •8.5 Библиографический список
- •Лабораторная работа №9. «Исследование характеристик динамического воздушного насоса»
- •9.1. Теоретический раздел
- •9.1.1 Общие положения
- •9.1.2 Программа исследования
- •9.2 Указание по проведению работы
- •9.3 Содержание отчета
- •9.4 Библиографический список
- •Лабораторная работа №10. «экспериментальная Проверка уравнения Бернулли в воздушном потоке центробежного вентилятора»
- •10.1 Теоретический раздел
- •10.1.1 Общее положение
- •10.1.2 Программа исследования
- •10.2 Указания по проведению работы
- •10.3 Содержание отчета
- •10.4 Контрольные вопросы
- •Лабораторная работа № 11. «Исследование закономерностей при непрямом гидравлическом ударе»
- •11.1 Содержание работы
- •11.2 Теоретический раздел
- •11.3 Применяемое оборудование и инструмент
- •11.4 Указания по проведению работы
- •11.5 Обработка полученных результатов
- •11.6 Содержание отчета
- •11.7 Контрольные вопросы
1.4 Контрольные вопросы
Каков физический смысл величин, входящих в уравнения Бернулли?
Какие существуют ограничения на применение уравнения Бернулли?
К каким выражениям приводятся уравнения Бернулли в случаях: – неподвижной жидкости? – равномерного движения в горизонтальном трубопроводе? – истечения жидкости из бака через маленькое круглое отверстие?
Каковы основные причины возникновения потерь напора при движении вязкой жидкости? Чем отличаются уравнения Бернулли для идеальной и реальной жидкости?
Каков геометрический и физический смысл понятий: геодезический, пьезометрический, гидравлический уклон?
Может ли быть отрицательным гидравлический уклон? Почему?
Может ли быть отрицательным пьезометрический уклон? Почему?
Библиографический список
Гидравлика, гидромашины, гидроприводы / Т.М. Башта. С.С. Руднев, Б.Б. Некрасов и.др. М: Машиностроение, 1982. -423с.
Угинчус А.А. Гидравлика и гидравлические машины - изд.4, перераб. и доп. - Изд-во Харьковского ун-та, 1970.
Большаков В.А. и др. Справочник по гидравлике. - К.: Вища школа, 1984, - 343 с.
Вакина Б.В., Денисенко И.Д., Столяров А.Л. Машиностроительная гидравлика. Примеры расчетов. - К : Вища школа, 1987. - 208 с.
Лабораторная работа №2. «Исследование РежимОв движения жидкости»
Цель работы: произвести наблюдение ламинарного и турбулентного режимов движения жидкости и проверить условия их существования.
2.1 Теоретический раздел
2.1.1 Основные положения
Впервые режимы движения подробно исследовал английский физик Осборн Рейнольдс. Было установлено, что при малых средних по сечению скоростях потока жидкости в трубе наблюдается ламинарный режим движения, когда слои жидкости не смешиваются, а передвигаются вдоль трубы по прямолинейным траекториям. Когда средняя скорость Vср приближается к некоторому критическому значению Vкр, слои жидкости начинают совершать колебательные движения, пульсировать, закручиваться. При дальнейшем увеличении средней скорости поток становится еще не стабильнее, в нем возникают завихрения. При Vср= Vкр возникает турбулентный режим движения и слои жидкости интенсивно смешиваются между собой.
Ламинарный режим встречается достаточно редко – при течении очень вязких жидкостей или при очень малых скоростях движения. В большинстве случаев на практике наблюдается турбулентный режим движения. Исследованиями Рейнольдса доказано, что переход от ламинарного режима к турбулентному и наоборот происходит при некоторых значениях безразмерного параметра, названного позже числом Рейнольдса, которое определяется следующим образом:
,
(2.1)
где Vср – средняя скорость течения жидкости, d – диаметр трубопровода, ν – кинематическая вязкость жидкости.
Эти
значения называются «критическими»
числами Рейнольдса
.
При
наблюдается ламинарный режим движения,
при
– турбулентный. Так для труб круглого
поперечного сечения
,
для гибких рукавов
,
для окон цилиндрического золотника
,
для плоских и конусных клапанов
.
Значение кинематической вязкости воды
представлены в таблице 2.1.
Таблица 2.1 – Кинематическая вязкость воды при различных значениях температуры
Температура воды, t (°C) |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
18 |
20 |
Кинематическая вязкость, ν (мм2/с) |
1,57 |
1,47 |
1,39 |
1,31 |
1,24 |
1,18 |
1,12 |
1,06 |
1,01 |
