- •2.Элементы линейной алгебры
- •3. Функция. Предел последовательности и предел функции. Непрерывность функции
- •4.Дифференциальное исчисление функций одной и многих переменных
- •5.Неопределенный и определенный интегралы.
- •7.Элементы комбинаторики, теории графов,
- •Элементы линейной алгебры.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Линейная алгебра.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Производная и ее применение.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Неопределённый и определённый интеграл.
- •Дифференциальные уравнения
- •Контрольное задание Вариант 1
- •Вариант 2
- •Теория вероятностей
- •Контрольное задание Вариант 1
- •Вариант 2
- •Краткие теоретические сведения Содержание:
- •Элементы линейной алгебры.
- •I. Введение в курс математики
- •1.Многочлены.
- •Деление с остатком
- •II. Элементы линейной алгебры
- •1. Основные определения
- •2. Операции над матрицами
- •1. Миноры и алгебраические дополнения
- •2. Свойства определителей
- •3. Вычисление определителей
- •1. Правило Крамера
- •2. Метод Гаусса исключения неизвестных
- •III. Дифференциальное исчисление функций одной переменной
- •1.1. Понятие функции
- •1.2. Предел функции
- •1.2.1. Свойства пределов
- •1.2.2. Замечательные пределы
- •1.3. Бесконечно малые и бесконечно большие функции
- •1.4. Непрерывность функции в точке.
- •1.4.1. Непрерывность основных элементарных функций.
- •1.4.2. Свойства функций, непрерывных в точке.
- •1.5. Точки разрыва функции.
- •1.5.1. Классификация точек разрыва функции.
- •1.6. Свойства функций, непрерывных на отрезке.
- •1.7. Производная функции, ее геометрический и механический смысл.
- •1.7.1. Понятие производной.
- •1.7.2. Необходимое условие дифференцируемости функции в точке.
- •1.8. Правила дифференцирования.
- •1.9. Дифференцирование сложной функции.
- •1.10. Дифференцирование обратной функции.
- •1.11. Производная неявно заданной функции.
- •1.12. Производные высших порядков.
- •1.12.1. Производные явно заданных функций.
- •1.12.2. Производные неявно заданных функций.
- •1.13. Дифференциал функции и его геометрический смысл.
- •1.13.1. Дифференциал первого порядка.
- •1.13.2. Дифференциалы высших порядков.
- •1.14. Теоремы о дифференцируемых функциях.
- •1.15. Правило Бернулли-Лопиталя для раскрытия неопределенностей.
- •I. Неопределённости вида и .
- •II. Неопределённости вида 0 ∙ ∞ и (∞ - ∞).
- •III. Неопределенности вида 1 ∞, ∞0 и 00.
- •1.16. Формула Тейлора.
- •1.17. Исследование функций с помощью производных.
- •1.17.1. Монотонность функции.
- •1.17.2. Экстремумы функции.
- •1.17.3. Выпуклость и вогнутость графика функции.
- •2. Дифференциальное исчисление функций многих переменных.
- •2.1. Определение функции многих переменных.
- •2.2. Предел и непрерывность функции многих переменных.
- •2.3 Частные производные функции многих переменных.
- •2.3.1. Определение частной производной и её геометрический смысл.
- •2.3.2. Частные производные высших порядков.
- •2.4. Полный дифференциал функции многих переменных.
- •Применение полного дифференциала в приближенных вычислениях.
- •2.4.3. Дифференциалы высших порядков
- •2.5. Дифференцирование сложной функции.
- •2.6. Дифференцирование неявно заданной функции.
- •2.7. Геометрические приложения частных производных.
- •2.7.1.Уравнение касательной и нормальной плоскости к пространственной кривой.
- •2.7.2. Уравнение касательной плоскости и нормали к поверхности.
- •2.8. Экстремум функции многих переменных.
- •2.8.1. Необходимое и достаточное условия экстремума.
- •2.8.2. Достаточные признаки наличия экстремума для функций двух и трех переменных.
- •2.8.3. Условный экстремум функции многих переменных.
- •IV. Неопределённый интеграл.
- •1. Свойства неопределенного интеграла
- •2. Основные формулы интегрирования (табличные интегралы).
- •3. Непосредственное интегрирование.
- •4. Интегрирование методом подстановки.
- •Вопросы и упражнения для самопроверки:
- •V. Определенный интеграл
- •1. Понятие определенного интеграла.
- •2. Основные свойства определенного интеграла.
- •3. Непосредственное вычисление определенного интеграла.
- •4. Вычисление определенного интеграла методом подстановки.
- •Вопросы и упражнения для самопроверки.
- •VI. Элементы теории вероятностей
- •1. Основные понятия комбинаторики.
- •2. Случайные события. Вероятность события.
- •Вопросы и упражнения для самопроверки.
- •Задания для домашней контрольной работы Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Методические указания по выполнению дкр
- •Решение типового варианта домашней контрольной работы
- •Контрольные вопросы Дисциплина « Математика » Специальность: 2-270101 «Экономика и организация производства»
- •III. Функция. Предел последовательности и предел функции. Непрерывность функции.
- •IV. Дифференциальное исчисление функции одной и многих переменных.
- •V. Неопределенный и определенный интегралы.
- •VI. Дифференциальные управления.
- •VII. Элементы комбинаторики, теории графов, теория вероятностей.
- •Критерии оценки знаний учащегося на экзамене по дисциплине «математика» Специальность: «Экономика и организация производства»
- •Критерии оценки теоретического вопроса
- •Литература
VI. Дифференциальные управления.
35. Понятие дифференциального управления: решение, задача Коши.
36. Дифференциальные уравнения 1-го порядка: а) с разделяющимися переменными; б) однородные; в) линейные.
37. Решение линейных однородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами.
VII. Элементы комбинаторики, теории графов, теория вероятностей.
38. Элементы комбинаторики: перестановки, размещения, сочетания.
39. Понятие графа. Простейшие свойства. Использование графов для решения задач.
40. Основные понятия теории вероятностей. Действия над событиями.
41. Классическая вероятность и ее свойства.
42. Решение задач с использованием элементов комбинаторики и теории вероятностей.
44. Задачи линейного программирования. Задача: а) составления оптимального плана (составления производственных планов по выпуску той или иной продукции с целью получения максимальной прибыли); б) на составление смеси (организация снабжения); в) транспортная задача.
45. Графическое решение задач линейного программирования.
Критерии оценки знаний учащегося на экзамене по дисциплине «математика» Специальность: «Экономика и организация производства»
Экзаменационный билет состоит из 3 вопросов: 2 теоретические и 1 практическое
задание
Каждое задание оценивается 10 баллами
Критерии оценки теоретического вопроса
Баллы |
Показатели оценки |
0 |
Выставляется при отсутствии ответа или решения |
1-2 |
Материал излагается только в виде ответов на наводящие вопросы |
3 |
Содержание материала излагается поверхностно, неточно, несамостоятельно, ответы на вопросы неточные |
4 |
Содержание материала излагается поверхностно, неточно, несамостоятельно, ответы на вопросы неточные, ответы на наводящие вопросы правильные |
5-6 |
Содержание материала излагается последовательно, точно, правильно, но допущены 3 незначительные ошибки |
7-8 |
Материал излагается сжато, структурируется в соответствии с собственной логической схемой учащегося, свободно использует наглядные средства или иллюстрации ответа, приводит дополнительные примеры |
9-10 |
Высокая степень обобщения материала, установление связи данного материала с другими предметами, изложение серьезное, системное |
Критерии оценки практического занятия
Задание считается выполненным, если оно удовлетворяет следующим требованиям:
правильный выбор способа решения;
правильное использование математической терминологии и символики;
правильное выполнение необходимых вычислений и преобразований;
правильное выполнение необходимых чертежей и графиков;
получение правильного ответа
Если при выполнении практического задания допущена существенная ошибка, то задание считается невыполненным. При наличии существенной ошибки «цена» задания снижается на 1 балл.
Оценка ответа учащегося
Отметка выставляется в соответствии с данными условиями следующей таблицы
Общая сумма баллов |
Отметка |
0 |
0 |
1-3 |
1 |
4-6 |
2 |
7-9 |
3 |
10-12 |
4 |
13-15 |
5 |
16-18 |
6 |
19-21 |
7 |
22-24 |
8 |
25-27 |
9 |
18-30 |
10 |
