Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экономика и организация производства 2013-2014 учебный год.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.48 Mб
Скачать

Вопросы и упражнения для самопроверки.

1. Какое событие называется невозможным; достоверным?

2. Какие события называются несовместными; равновозможными?

3. Какие события образуют полную систему событий?

4. Что понимается под вероятностью события?

5. Дайте классическое определение вероятности события.

6. а) В урне 3 белых и 9 черных шаров. Из урны наугад вынимают один шар. Какова вероятность того, что вынутый шар окажется черным?

б) В урне 4 красных и 7 синих шаров. Из урны одновременно вынимают два шара. Какова вероятность того, что оба шара красные?

в) Первенство по футболу оспаривают 18 команд, среди которых 5 лидирующих. Путем жеребьевки команды распределены на две группы по 9 команд в каждой. Какова вероятность попадания всех лидирующих команд в одну группу?

О т в е т ы: 6. а) 3/4; б) 6/55; в) 1/3.

Задания для домашней контрольной работы Вариант 1

  1. Предприятие производит продукцию трёх видов. При этом используется сырьё трёх типов. Нормы затрат сырья на единицу продукции каждого вида, себестоимость каждого вида сырья и стоимость его доставки приведены в таблице:

Т ип сырья

1

2

3

Вид изделия

1

5

4

2

2

3

1

0

3

1

3

7

Себестоимость

3

4

3

единицы сырья

Стоимость доставки

1

2

2

единицы сырья

Каковы общие затраты предприятия на производство 100 усл. ед. продукции первого вида, 75 усл. ед. второго вида и 50 усл. ед. третьего вида?

Решите задачу с помощью матриц.

2) Проверьте невырожденность системы линейных уравнений и решите её методом Крамера и Гаусса:

3) Найдите наименьшее и наибольшее значения функции f(x) = на отрезке [2;25].

4) Вычислите определённый интеграл:

а) ;

б)

5) Вычислите площадь фигуры ограниченной линиями:

у = х2 + 1 и х + у = 3.

6) Найдите общее и частное решение дифференциального уравнения:

х2 dx + y dy = 0, если у = 1 при х = 0.

Вариант 2

1) Предприятие производит продукцию трёх видов. При этом используется сырьё трёх типов. Нормы затрат сырья на единицу продукции каждого вида, себестоимость каждого вида сырья и стоимость его доставки приведены в таблице:

Тип сырья

1

2

3

Вид изделия

1

1

2

4

2

2

1

7

3

6

5

1

Себестоимость

5

3

2

единицы сырья

Стоимость доставки

2

6

8

единицы сырья

Каковы общие затраты предприятия на производство 150 усл. ед. продукции первого вида, 70 усл. ед. второго вида и 45 усл. ед. третьего вида?

Решите задачу с помощью матриц.

2) Проверьте невырожденность системы линейных уравнений и решите её методом Крамера и Гаусса:

3) Найдите наименьшее и наибольшее значения функции f(x) = на отрезке [-2;1].

4) Вычислите определённый интеграл:

а) ;

б)

5) Вычислите площадь фигуры ограниченной линиями:

у = х2 – 6x + 7 и у – x - 1 = 0.

6) Найдите общее и частное решение дифференциального уравнения:

y″ - 9y = 0, если у = 2 и y′ = 6 при x = 0.