- •2.Элементы линейной алгебры
- •3. Функция. Предел последовательности и предел функции. Непрерывность функции
- •4.Дифференциальное исчисление функций одной и многих переменных
- •5.Неопределенный и определенный интегралы.
- •7.Элементы комбинаторики, теории графов,
- •Элементы линейной алгебры.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Линейная алгебра.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Производная и ее применение.
- •Контрольное задание Вариант 1
- •Вариант 2
- •Неопределённый и определённый интеграл.
- •Дифференциальные уравнения
- •Контрольное задание Вариант 1
- •Вариант 2
- •Теория вероятностей
- •Контрольное задание Вариант 1
- •Вариант 2
- •Краткие теоретические сведения Содержание:
- •Элементы линейной алгебры.
- •I. Введение в курс математики
- •1.Многочлены.
- •Деление с остатком
- •II. Элементы линейной алгебры
- •1. Основные определения
- •2. Операции над матрицами
- •1. Миноры и алгебраические дополнения
- •2. Свойства определителей
- •3. Вычисление определителей
- •1. Правило Крамера
- •2. Метод Гаусса исключения неизвестных
- •III. Дифференциальное исчисление функций одной переменной
- •1.1. Понятие функции
- •1.2. Предел функции
- •1.2.1. Свойства пределов
- •1.2.2. Замечательные пределы
- •1.3. Бесконечно малые и бесконечно большие функции
- •1.4. Непрерывность функции в точке.
- •1.4.1. Непрерывность основных элементарных функций.
- •1.4.2. Свойства функций, непрерывных в точке.
- •1.5. Точки разрыва функции.
- •1.5.1. Классификация точек разрыва функции.
- •1.6. Свойства функций, непрерывных на отрезке.
- •1.7. Производная функции, ее геометрический и механический смысл.
- •1.7.1. Понятие производной.
- •1.7.2. Необходимое условие дифференцируемости функции в точке.
- •1.8. Правила дифференцирования.
- •1.9. Дифференцирование сложной функции.
- •1.10. Дифференцирование обратной функции.
- •1.11. Производная неявно заданной функции.
- •1.12. Производные высших порядков.
- •1.12.1. Производные явно заданных функций.
- •1.12.2. Производные неявно заданных функций.
- •1.13. Дифференциал функции и его геометрический смысл.
- •1.13.1. Дифференциал первого порядка.
- •1.13.2. Дифференциалы высших порядков.
- •1.14. Теоремы о дифференцируемых функциях.
- •1.15. Правило Бернулли-Лопиталя для раскрытия неопределенностей.
- •I. Неопределённости вида и .
- •II. Неопределённости вида 0 ∙ ∞ и (∞ - ∞).
- •III. Неопределенности вида 1 ∞, ∞0 и 00.
- •1.16. Формула Тейлора.
- •1.17. Исследование функций с помощью производных.
- •1.17.1. Монотонность функции.
- •1.17.2. Экстремумы функции.
- •1.17.3. Выпуклость и вогнутость графика функции.
- •2. Дифференциальное исчисление функций многих переменных.
- •2.1. Определение функции многих переменных.
- •2.2. Предел и непрерывность функции многих переменных.
- •2.3 Частные производные функции многих переменных.
- •2.3.1. Определение частной производной и её геометрический смысл.
- •2.3.2. Частные производные высших порядков.
- •2.4. Полный дифференциал функции многих переменных.
- •Применение полного дифференциала в приближенных вычислениях.
- •2.4.3. Дифференциалы высших порядков
- •2.5. Дифференцирование сложной функции.
- •2.6. Дифференцирование неявно заданной функции.
- •2.7. Геометрические приложения частных производных.
- •2.7.1.Уравнение касательной и нормальной плоскости к пространственной кривой.
- •2.7.2. Уравнение касательной плоскости и нормали к поверхности.
- •2.8. Экстремум функции многих переменных.
- •2.8.1. Необходимое и достаточное условия экстремума.
- •2.8.2. Достаточные признаки наличия экстремума для функций двух и трех переменных.
- •2.8.3. Условный экстремум функции многих переменных.
- •IV. Неопределённый интеграл.
- •1. Свойства неопределенного интеграла
- •2. Основные формулы интегрирования (табличные интегралы).
- •3. Непосредственное интегрирование.
- •4. Интегрирование методом подстановки.
- •Вопросы и упражнения для самопроверки:
- •V. Определенный интеграл
- •1. Понятие определенного интеграла.
- •2. Основные свойства определенного интеграла.
- •3. Непосредственное вычисление определенного интеграла.
- •4. Вычисление определенного интеграла методом подстановки.
- •Вопросы и упражнения для самопроверки.
- •VI. Элементы теории вероятностей
- •1. Основные понятия комбинаторики.
- •2. Случайные события. Вероятность события.
- •Вопросы и упражнения для самопроверки.
- •Задания для домашней контрольной работы Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Методические указания по выполнению дкр
- •Решение типового варианта домашней контрольной работы
- •Контрольные вопросы Дисциплина « Математика » Специальность: 2-270101 «Экономика и организация производства»
- •III. Функция. Предел последовательности и предел функции. Непрерывность функции.
- •IV. Дифференциальное исчисление функции одной и многих переменных.
- •V. Неопределенный и определенный интегралы.
- •VI. Дифференциальные управления.
- •VII. Элементы комбинаторики, теории графов, теория вероятностей.
- •Критерии оценки знаний учащегося на экзамене по дисциплине «математика» Специальность: «Экономика и организация производства»
- •Критерии оценки теоретического вопроса
- •Литература
2. Случайные события. Вероятность события.
Теория вероятностей — это математическая наука, которая изучает закономерности в случайных событиях. К основным понятиям теории вероятностей относятся испытания и события.
Под испытанием (опытом) понимают реализацию данного комплекса условий, в результате которого непременно произойдет какое-либо событие.
Например, бросание монеты — испытание; появлений герба или цифры — события.
Случайным событием называется событие, связанное с данным испытанием, которое при осуществлении испытания может произойти, а может и не произойти. Слово «случайное» для краткости часто опускают и говорят просто «событие». Например, выстрел по цели—это опыт, случайные события в этом опыте — попадание в цель или промах.
Событие в данных условиях называется достоверным, если в результате опыта оно непременно должно произойти, и невозможным, если оно заведомо не произойдет. Например, выпадание не более шести очков при бросании одной игральной кости — достоверное событие; выпадание десяти очков при бросании одной игральной кости — невозможное событие.
События называются несовместными, если никакие два из них не могут появиться вместе. Например, попадание и промах при одном выстреле — это несовместные события.
Говорят, что несколько событий в данном опыте образуют полную систему событий, если в результате опыта непременно должно произойти хотя бы одно из них. Например, при бросании игральной кости события, состоящие в выпадании одного, двух, трех, четырех, пяти и шести очков, образуют полную систему событий.
События называются равновозможными, если ни одно из них не является объективно более возможным, чем другие. Например, при бросании монеты выпадание герба или числа — события равновозможные. Каждое событие обладает какой-то степенью возможности. Числовая мера степей объективной возможности события — это вероятность события. Вероятность события А обозначается Р(А).
Пусть из системы n несовместных равновозможных исходов испытания m исходов благоприятствуют событию А, тогда вероятностью события А называют отношение m числа исходов, благоприятствующих событию А, к числу всех исходов данного испытания:
Р(А)=m/n.
Эта формула носит название классического определения вероятности.
Если В - достоверное событие, то m = n и Р(В) = 1;
если С - невозможное событие, то m = 0 и Р(С) = 0;
если А - случайное событие, то m ≤ n и Р(А) ≤ 1.
Таким образом, вероятность события заключается в следующих пределах: О ≤ Р(А) ≤ 1.
Пример 7. Игральную кость подбрасывают один раз. Найти вероятность событий: А — появление четного числа очков; В — появление не менее пяти очков; С — появление не более пяти очков.
Решение. Опыт имеет шесть равновозможных независимых исходов (появление одного, двух, трех, четырех, пяти и шести очков), образующих полную систему.
Событию А благоприятствуют три исхода (выпадание двух, четырех и шести очков), поэтому Р(А) =3/6=1/2; событию В - два исхода (выпадание пяти и шести очков), поэтому Р(В) =2/6=1/3; событию С - пять исходов (выпадание одного, двух, трех, четырех и пяти очков), поэтому Р(С) =5/6.
При вычислении вероятности часто приходится использовать формулы комбинаторики.
Рассмотрим примеры непосредственного вычисления вероятностей.
Пример 8. В урне находится 7 красных и 6 синих шаров. Из урны одновременно вынимают два шара. Какова вероятность того, что оба шара красные (событие В)?
Решение. Число равновозможных независимых исходов равно
Событию А благоприятствуют
=
21 исходов. Следовательно
Р(А)=21/78=7/26
Пример 9. В партии из 24 деталей пять бракованных. Из партии выбирают наугад 6 деталей. Найти вероятность того, что среди этих 6 деталей окажутся 2 бракованных (событие В)
Решение. Число равновозможных независимых исходов равно.
Подсчитаем число исходов m, благоприятствующих событию В. Среди шести взятых наугад деталей должно быть 2 бракованных и 4 стандартных. Две бракованные детали из пяти
можно выбрать
=
10 способами, а 4 стандартных детали из
19 стандартных деталей
можно выбрать
=
3876 способами.
Каждая комбинация бракованных деталей может сочетаться с каждой комбинацией
стандартных деталей, поэтому m=
3876 ∙ 10 =38760. Следовательно,
Пример 10. Девять различных книг расставлены наудачу на одной полке. Найти вероятность того, что четыре определенные книги окажутся поставленными рядом (событие С)
Решение. Здесь число равновозможных
независимых исходов есть n=Р9=9!.
Подсчитаем число исходов m,
благоприятствующих событию С. Представим
себе, что четыре определенные книги
связаны вместе, тогда эту связку можно
расположить на полке Р6=6! способами
(связка плюс остальные пять книг). Внутри
связки четыре книги можно переставлять
Р4=41 способами. При этом каждая
комбинация внутри связки может сочетаться
с каждым из Р6 способов образования
связки, т.е. m= 6!∙4!.
Следовательно,
.
