- •I . Электронные ключи
- •Процессы в ключе на биполярном транзисторе
- •Схемы ключей с повышенным быстродействием
- •II. Мультивибраторы
- •Методы регулирования длительности импульса
- •Методы улучшения параметров мультивибратора
- •III. Генераторы линейно изменяющегося напряжения
- •Глин с отрицательной обратной связью
- •Глин со стабилизатором тока
- •Системы счисления
- •V. Логические основы вычислительнойтехники
- •VI. Комбинационные цифровые устройства
- •Шифраторы
- •Мультиплексоры
- •VI. Последовательностные цифровые устройства
- •Регистр памяти
- •Регистры сдвига
- •Суммирующие двоичные счетчики
Глин с отрицательной обратной связью
Принципиальная схема ГЛИН с отрицательной обратной связью через емкость С формирующей цепи показана на рис. 14, а. Здесь и далее приводится условное изображение разрядного ключа SW.
а) б)
Рис. 14.
Заменив емкость С на Свн (14,б), получим схему простого ГЛИН, к выходу которого подключен инвертирующий усилитель с коэффициентом усиления К. На выходе усилителя параметры ГЛИН оказываются лучше в (1 + К) раз:
α = tnp / τ * (1 + К) .
Таким образом, введение глубокой обратной связи (К >>1) позволяет уменьшить коэффициент нелинейности в (1+ К) раз при неизменном коэффициенте использования β.
В схемах ГЛИН удобно применять современные операционные усилители (К = 104...106) с высоким входным сопротивлением и большой скоростью нарастания выходного напряжения (до 80 В/мкс). Последний параметр ограничивает время восстановления и период повторения ГЛИН.
Некоторым недостатком рассмотренной схемы ГЛИН с ООС может оказаться дрейф постоянной составляющей выходного напряжения операционного усилителя, поскольку он охвачен отрицательной обратной связью только по переменному току.
От этого недостатка свободна схема ГЛИН (рис. 15), в которой ключ SW включен параллельно С, т. е. периодически замыкает выход усилителя на его инвертирующий вход. При этом в конце интервала выходное напряжение практически совпадает с напряжением на прямом входе усилителя.
Рис. 15.
ГЛИН С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ
Практические схемы ГЛИН с положительной обратной связью показаны на рис. 17. В первой из них (рис. 16) в качестве усилителя с К < 1 используется эмиттерный повторитель на транзисторе VT.
Рис. 16.
В схеме с операционным усилителем (рис. 17) ток фиксации Iф будет втекать в его выходную цепь. Поэтому в схеме необходимо использовать современные операционные усилители с комплементарной парой выходных эмиттерных повторителей. Для получения К <1 и устранения дрейфа выходного напряжения операционный усилитель на рис. 17 охвачен отрицательной обратной связью по постоянному току (с выхода на инвертирующий вход), при которой его коэффициент передачи становится равным:
Kп = K / (1+K),
где К — коэффициент усиления без обратной связи.
Рис. 17.
Благодаря большим значениям К операционных усилителей Kп в этом случае ближе к 1, чем в схеме с эмиттерным повторителем, и коэффициент нелинейности значительно меньше.
Сравнивая качества ГЛИН с положительной и отрицательной обратной связью можно сказать, что сравниваемые схемы ГЛИН обеспечивают при равных условиях одинаково хорошие результаты.
Глин со стабилизатором тока
В отличие от рассмотренных выше схем в стабилизатор тока вводится обратная связь не по напряжению, а по току, что позволяет повысить внутреннее сопротивление стабилизатора. Эквивалентная схема ГЛИН (рис. 18) содержит идеальный источник тока /, параллельно которому включено внутреннее сопротивление переменному току R.
Рис. 18.
В ГЛИН со стабилизатором тока можно получить малые коэффициенты нелинейности.
Практическая схема ГЛИН со стабилизатором тока на транзисторе VT показана на рис. 19.
Рис. 19.
Конденсатор С заряжается коллекторным током транзистора. Отрицательная обратная связь по току создается за счет сопротивления Rэ. При большой глубине обратной связи, внутреннее сопротивление стабилизатора Ri будет определяться выходной проводимостью транзистора в схеме «общая база» и может достигать значений 106 - 108.
Общий недостаток схем ГЛИН со стабилизатором тока — плохая нагрузочная способность, поскольку сопротивление нагрузки оказывается включенным параллельно Ri и увеличивает коэффициент нелинейности.
