Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ВТ и ИТ(3CEM).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.9 Mб
Скачать

Глин с отрицательной обратной связью

Принципи­альная схема ГЛИН с отрицательной обратной связью через емкость С формирующей цепи показана на рис. 14, а. Здесь и далее приводится условное изображение разрядного ключа SW.

а) б)

Рис. 14.

Заменив емкость С на Свн (14,б), получим схе­му простого ГЛИН, к выходу которого подключен ин­вертирующий усилитель с коэффициентом усиления К. На выходе усилителя параметры ГЛИН оказываются лучше в (1 + К) раз:

α = tnp / τ * (1 + К) .

Таким образом, введение глубокой обратной связи (К >>1) позволяет уменьшить коэффициент нелинейности в (1+ К) раз при неизменном коэффициенте использо­вания β.

В схемах ГЛИН удобно применять современные опе­рационные усилители (К = 104...106) с высоким входным сопротивлением и большой скоро­стью нарастания выходного напряжения (до 80 В/мкс). Последний параметр ограничивает время восстановле­ния и период повторения ГЛИН.

Некоторым недостатком рассмотренной схемы ГЛИН с ООС может оказаться дрейф постоянной составляющей выходного напряжения операционного усилителя, поскольку он охвачен отрицательной обрат­ной связью только по переменному току.

От этого недостатка свободна схема ГЛИН (рис. 15), в которой ключ SW включен параллельно С, т. е. периодически замыкает выход уси­лителя на его инвертирующий вход. При этом в конце интервала выходное напряжение практически совпа­дает с напряжением на прямом входе усилителя.

Рис. 15.

ГЛИН С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ

Практические схемы ГЛИН с положительной обрат­ной связью показаны на рис. 17. В первой из них (рис. 16) в качестве усилителя с К < 1 используется эмиттерный повторитель на транзисторе VT.

Рис. 16.

В схеме с операционным усилителем (рис. 17) ток фиксации Iф будет втекать в его выходную цепь. По­этому в схеме необходимо использовать современные операционные усилители с комплементарной парой вы­ходных эмиттерных повторителей. Для получения К <1 и устранения дрейфа выходного напряжения операцион­ный усилитель на рис. 17 охвачен отрицательной об­ратной связью по постоянному току (с выхода на ин­вертирующий вход), при которой его коэффициент пе­редачи становится равным:

Kп = K / (1+K),

где К — коэффициент усиления без обратной связи.

Рис. 17.

Благодаря большим значениям К операционных уси­лителей Kп в этом случае ближе к 1, чем в схеме с эмиттерным повторителем, и коэффициент нелинейно­сти значительно меньше.

Сравнивая качества ГЛИН с положительной и отрицательной обратной связью можно сказать, что сравни­ваемые схемы ГЛИН обеспечивают при равных услови­ях одинаково хорошие результаты.

Глин со стабилизатором тока

В отличие от рас­смотренных выше схем в стабилизатор тока вводится обратная связь не по напряжению, а по току, что позво­ляет повысить внутреннее сопротивление стабили­затора. Эквивалентная схема ГЛИН (рис. 18) со­держит идеальный источник тока /, параллельно кото­рому включено внутреннее сопротивление переменному току R.

Рис. 18.

В ГЛИН со стабилизатором тока можно получить малые коэффициенты нелинейности.

Практическая схема ГЛИН со стабилизатором тока на транзисторе VT показана на рис. 19.

Рис. 19.

Конденсатор С заряжается коллекторным током транзистора. Отрицательная обратная связь по току создается за счет сопротивления Rэ. При большой глубине обратной связи, внут­реннее сопротивление стабилизатора Ri будет опреде­ляться выходной проводимостью транзистора в схеме «общая база» и может достигать значений 106 - 108.

Общий недостаток схем ГЛИН со стабилизатором тока — плохая нагрузочная способность, поскольку со­противление нагрузки оказывается включенным парал­лельно Ri и увеличивает коэффициент нелинейности.