- •Оглавление
- •Введение
- •История развития методов расчета стержневых систем
- •Предпосылки
- •2 Первые методы расчетов
- •2.1 Работы д. И. Журавского
- •2.2 Работы Дж. Шведлера
- •2.3 Вклад г. Ламэ
- •2.4 Работы Августиновича
- •3 Появление классических методов расчета ферм
- •3.1 Работы у. Дж. Ренкина
- •3.2 Вклад а. Риттера
- •3.3 Работы Дж. К. Максвелла и его «дублеров»
- •4 Новые методы расчета
- •5 Работы в области строительной механики за последние годы
- •Заключение
- •Список литературы
2.2 Работы Дж. Шведлера
Рассмотрим далее работы Дж. Шведлера [4]. В 1851 г. вышла статья, содержавшая метод расчета статически определимых ферм, известный под «методом вырезания узлов» и основанный на составлении условий равновесия для усилий в каждом узле фермы, в предложении его шарнирности. Это был именно тот метод, которым ранее пользовался Д. И. Журавский. Отличие метода Дж. Шведлера в том, что он позволяет обойтись без совместных уравнений лишь в том случае, если возможен такой порядок обхода узлов фермы, при котором в каждом следующем узле встречаются только два неизвестных усилия. Иначе это приводит к совместным уравнениям, число которых равно числу стержней. При этом метод Д. И. Журавского для ферм с параллельными поясами позволяет обойтись без совместных уравнений и в более сложных случаях.
Рис. 4 Пример фермы, которую легче рассчитать методом Журавского, чем по способу вырезания узлов Дж. Шведлера.
Так для фермы (рис. 4) метод вырезания узлов в простой форме неприменим, так как он приводит к 15 совместным уравнениям с таким же числом неизвестных (при несимметричной нагрузке). Метод вырезания узлов Журавского позволяет сразу найти узловые горизонтальные составляющие, суммирование которых дает усилия в поясах, без всяких совместных уравнений.
Подводя итоги, предложенный Дж. Шведлером метод вырезания узлов является, в некотором смысле, повторением способа, ранее найденного Д. И. Журавским, при этом удобным. Основная заслуга Дж. Шведлера состояла в том, что он впервые привлек общее внимание к статически определимым фермам и указал их преимущества. До этого момента мостовые фермы сохраняли свою родовую связь с балкой (многорешетчатые фермы типа Гау и Кулибина–Тауна), то предложенные Дж. Шведлером схемы ферм, образованных из треугольников, внеся ясность в структуру и распределение усилий, совершенно порвали эту связь. Схемы, данные Дж. Шведлером далеко не сразу получили популярность среди инженеров. В России и Западной Европе многорешетчатые и многораскосные фермы (усовершенствованные в России профессором Н. А. Белелюбским, учеником Д. И. Журавского) продолжали применяться до конца XIX столетия наряду с новыми статически определимыми схемами, но постепенно вытеснялись последними. В консервативной Англии многораскосные фермы продолжали строить до конца 20-х годов XX века, при этом, в России они канули в историю.
Американская техника, заинтересовавшись преимуществами статически определимых ферм, встала во второй половине XIX века на ошибочный путь приближения конструкции ферм к их расчетной схеме и заменила жесткие узлы болтовыми шарнирами. Разумеется, такие фермы обладали пониженной жесткостью и работали плохо, так как их узлы постоянно расстраивались и требовали непрерывного наблюдения и ухода, но тем не менее они применялись в США очень упорно. Это один из немногих примеров в истории строительной механики неправильного понимания взаимной связи между конструкцией и расчетной схемой.
Надо отметить, что Дж. Шведлер, увлекаясь изобретенными им способом образования новых схем ферм, старался искать схемы, удовлетворяющие заранее заданным условиям: условию постоянства усилий в элементах пояса фермы с полигональным очертанием (так называется ферма Шведлера), условию минимума веса и т п. Часто выходило, что поиски приводили к схемам, неудобным в конструктивном отношении и потому почти не нашли применения. Кроме того, идея создания фермы наименьшего веса не всегда приводит к наиболее экономичным конструкциям, так как стоимость фермы определяется не только количеством материала в ее исполнении, но и стоимостью труда (которая не пропорциональна весу) и количеством материала в заготовках. При сложных формах элементов раскрой листов дает значительные отходы и потому облегчение веса не всегда уменьшает количество металла, использованного для ее изготовления.
