Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции нетр. метод. разруш. 1 часть.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
85.33 Mб
Скачать

3.2.2. Технологический узел

Технологический узел предназначен для преобразования электри­ческой энергии в другие виды энергии и для передачи преобразованной энергии на объект обработки.

Применительно к специфике разрядно-импульсной технологии разрушения горных пород технологический узел включает: рабочую разрядную камеру, рабочий орган в виде элек­тродной системы или электрогидравлического взрывателя, устрой­ство для впуска и выпуска рабочей жидкости и устройство перемеще­ния электродов или взрывающегося проводника (рис. 32). Рабочая разрядная камера заполняется рабочей жидкостью или специальным диэлектрическим составом.

Разрядные (рабочие) камеры делят на открытые и закрытые, заглубленные и поверхностные, стационарные, перемешаю­щиеся и выносные. Камеры могут быть одноразовые и многоразовые; вертикальные, горизонтальные и наклонные. Тип и форма рабочей ка­меры должны обеспечивать максимальное выделение накопленной элек­трической энергии, максимальный к л.д. преобразования этой энергии в механическую, передачу этой энергии на объект обработки или в заданную его зону.

Рабочий технологический орган предназначен для непосредственного преобразования электрической энергии в механичес­кую и для ввода этой энергии в рабочую среду, а через нее — на объект обработки. Тип рабочего органа зависит от используемой в данном тех­нологическом процессе разновидности электрического разряда в жид­кости — при свободном формировании разряда рациональны электрод­ные системы (рис. 33, а); при инициируемом разряде — электрогид­равлический взрыватель с взрывающимся проводником (рис. 33,6).

Рабочий орган испытывает динамические нагрузки, действие элек­тромагнитного поля и ультрафиолетовых излучений, а также влияние рабочей жидкости.

Электродная система применяется при свободном формировании разряда. По конструктивному фактору выделяют стержневые линей­ные и коаксиальные системы. Наиболее просты по исполнению линей­ные (противостоящие или параллельные) системы с сочетаниями форм электродов острие — острие и острие — плоскость. Недостатками ли­нейных систем являются их значительная индуктивность (1—10 мкГн) и ненаправленность действия.

Более совершенны коаксиальные сис­темы, имеющие малую собственную индуктивность и большой к.п.д. преобразования накопленной электрической энергии в энергию плаз­мы. Недостаток коаксиальных систем — их малая надежность и недол­говечность. Электродная система является технологичной и высоко­производительной за счет высокой частоты процесса создания механи­ческих нагружающих усилий.

По числу повторных разрядов выделяют системы разового и мно­гократного действия. Более экономичны и производительны системы многократного действия. Величина энергии, преобразуемой электродной системой, также влияет на конструктивное исполнение и долговечность.

В горной промышленности большее применение получили электродные системы, рассчитанные на с часто­той следования импульсов 1—12 в минуту. При электрическом разря­де из-за тепловых процессов происходит эрозия электродов, интенсив­ность которой зависит от материала электродов и рабочей жидкости, а также от количества энергии, выделяющейся в

канале разряда. Ра­бочая часть электродов изготавливается из стали Ст3 или Ст45; диа­метр выступающей части должен быть более 8 мм при длине не менее 12 мм. В зоне электрода температура плавления железа достигается за 10-6 с, а температура кипения за 5 • 10-6 с.

Вызванное этим интенсивное разрушение электрода сопровождается образованием плазменных струй (паров и жидких капель металла). Ослабленной зоной электрода являет­ся изоляционный слой на границе выхода стержня — токовода и воды.

Основными требованиями к электродной системе являются: высо­кий коэффициент преобразования электрической энергии, высокие

эксплуатационные и технологические показатели, экономически целе­сообразная стойкость. Наибольшую эрозионную стойкость имеют элек­троды из сплава меди, карбида вольфрама и никеля.

Площадь поверхнос­ти катода должна превышать площадь анода в 60—100 раз, что 6 соче­тании с подачей положительного импульса напряжения на анод обес­печит снижение потерь энергии на стадии формирования разряда и по­высит к.п.д. системы. Рациональный материал изоляции — стеклоплас­тик, вакуумная резина, полиэтилен.

Электрогидравлический взрыватель применяет­ся при инициируемом разряде, воспринимает динамические нагрузки, воздействие сильноточных полей и рабочей жидкости, что приводит к разрушению корпуса, изоляции и электрода.

В электрогидравлическом взрывателе положительный электрод изолирован от корпуса; взры­вающийся проводник устанавливается между электродом и заземлен­ным корпусом, выполняющим роль отрицательного электрода.

В за­висимости от решаемых технологических задач применяются проводни­ки из меди, алюминия, вольфрама; размеры проводника в пределах диаметр 0,25—2 мм, длина 60—300 мм. Конструкция электрогидрав­лического взрывателя должна обеспечивать концентрацию энергии в требуемом направлении и формирование цилиндрического по форме фронта ударной волны, а также технологичность операций по установ­ке и замене взрывающегося проводника.

Для выполнения части этих требований необходимо, чтобы корпус электрогидравлического взры­вателя служил жесткой преградой Для распространяющегося фронта волн.

Это обеспечивается применением специальных кумулятивных вые­мок в корпусе взрывателя и определенного сочетания линейных разме­ров корпуса и проводника. Так, диаметр корпуса взрывателя должен в 60 раз и более превышать диаметр взрывающегося проводника.

В последние годы разработаны новые конструктивные схемы и спе­циальные устройства, повышающие эффективность действия рабочих органов, обеспечивающие направленность действия на объект обработ­ки образуемых волн и гидропотока.

К таким устройствам относят пас­сивные отражающие поверхности, электроды со сложной геометрией, генераторы расходящихся волн. Имеются также устройства для протяж­ки взрывающегося проводника, что осложняет конструкцию взрыва­теля, но повышает технологичность процесса.

Для непосредственного преобразования энергии электрического разряда в энергию импуль­са сжатия применяют специальные электровзрывные патроны (рис. 34).

Рабочая жидкость, заполняющая технологический узел, играет весьма существенную роль в процессе электрического разряда. Именно в жидкости воспроизводится разряд с непосредственным пре­образованием электрической энергии в механическую.

В жидкости наб­людается ионизация, а также газовыделение непрореагировавших кис­лорода и водорода (до 0,5 • 10-6 м3/кДж), жидкость вовлекается в дви­жение распространяющимся фронтом волн, что образует в технологи­ческом узле гидропоток, способный совершать механическую работу.

В качестве рабочей жидкости применяется вода (техническая, мор­ская, дистиллированная) и водные электролиты; углеводородные (ке­росин, глицерин, масло трансформаторное) и силиконовые (полиметилсилоксаны) жидкости, а также специальные диэлектрические, жид­кие и твердые составы. Большее применение получила техническая вода, удельная электрическая проводимость которой составляет (1- 10) См/м.

Электрическая проводимость жидкости существенно влияет на ве­личину энергии, необходимой для формирования разряда, так как оп­ределяет величину пробойного напряжения и скорость движения стри­меров. Минимальная напряженность, при которой возникают стримеры, оценивается в 3,6 • 103 В/мм.

Значения удельной электрической проводимости (См/м) некото­рых жидкостей, применяемых для заполнения технологического узла, приведены ниже.

Техническая вода (водопроводная).........................................................(1—10) 10-2

Морская вода.............................................................................................1-10

Дистиллированная вода............................................................................4,3 -10-4

Глицерин.....................................................................................................6,4 • 10-6

Видно, что диэлектрические жидкости имеют малую ионную про­водимость. Удельное электрическое сопротивление жидкости (рж) оп­ределяет также величину электрического к.п.д. и зависит от величины энергии, вводимой в единицу объема рабочей жидкости. Так, для воды параметр рж уменьшается с увеличением до значений 500—1000 кДж/ ; с дальнейшим возрастанием W0 параметр рж стабилизирует­ся в пределах 10—25 Ом-м.

Электрический разряд в жидкости зависит также от плотности ра­бочей жидкости — с увеличением плотности уменьшаются пик перена­пряжений и крутизна спада тока. Чтобы повысить величину напряжения разрядного контура, а соответственно величину напряжения пробоя, следует применять рабочие жидкости с низкой удельной проводимостью (пример — техническую воду).

Применение жидкостей с большей прово­димостью облегчает процесс образования скользящих разрядов; увеличивает потери энергии на стадии формирования канала и снижает амплитуду ударной волны.

В качестве рабочей жидкости используют также вязкие составы (веретенное масло — 70%, алюминиевый порошок — 20%, мел — 10%), что повышает на 20—25 % амплитуду ударной волны и снижает потери энергии.

В качестве диэлектрика применяют также металлизированную диэлектрическую нить и бумажные ленты, пропитанные электролитом. Ввод твердого диэлектрика уменьшает общие затраты энергии на про­бой (в 4—5 раз), снижает требуемое число стримеров (в 4—6 раз) [44, 46], уменьшает термическую радиацию и ультрафиолетовое излучение. Введение в поток рабочей жидкости твердых частиц токопроводящих добавок применяют взамен взрывающихся проводников.