Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamenatsionnye_voprosy_po_biologii_1.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
479.83 Кб
Скачать

Биология клетки.

Какие виды лизосом в эукариотической клетке существуют и их функциональное значение.

  1. Лизосома. Это пузырёк диаметром 0,2 - 0,5 мкм, покрытый однослойной мемб­раной. Эта мембрана предохраняет структуры и вещества клетки от разрушающих действий ферментов лизосом. При нарушений её целостнос­ти ферменты выходят в цитоплазму клетки, и происходит автолиз – са­мопереваривание клетки. Ферменты лизосом способны расщеплять бел­ки, нуклеиновые кислоты, полисахариды и липиды.

Функции лизосом:

1. осуществляют внутриклеточное пищеварение; лизосомы – миниа­тюрная пищеварительная система клетки;

2. удаляют отжившие органоиды клетки или личиночные органы. Так, хвост у головастика лягушек рассасывается под действием фермента лизосом – катепсина;

3. превращают вредные для клетки вещества в перевариваемые про­дукты;

4. участвуют в защите клетки то бактерий и вирусов (вирусы замуровываются в лизосоме).

Образуются лизосомы в комплексе Гольджи: сюда поступают синте­зированные на рибосомах ферменты, здесь они окружаются мембраной и вы­водятся в цитоплазму. Это первичные (неактивные) лизосомы. Вторичные (активные) лизосомы образуются из первичных. Они подразделяются на фаголизосомы и аутолизосомы. Фаголизосомы переваривают материал, поступающий в клетку извне. Аутолизосомы разрушают собственные, изношенные структуры клетки. Вторичные лизосомы, в которых процесс переваривания завершён, называются остаточными тельцами. В них отсутствуют ферменты, и содержится непереваренный материал.

Сформулировать три главных положения клеточной теории.

  1. Началом изучения клетки можно считать 1665г., когда Р. Гук уви­дел в микроскоп на тонком срезе пробки мелкие ячейки, названные им клетками. В 30-е годы XIX века Р. Броун открыл ядро, что создало основу для сопоставления всех клеток.

В 1839г. Т. Шванн и М. Шлейден обобщили накопленный материал и сфор­мулировали основное положение: все растительные и животные орга­низм состоят из клеток, сходных по строению.

В 1858г. Р. Вирхов внёс очень важное дополнение в клеточную тео­рию – он доказал, что количество клеток увеличивается только одним способом – в результа­те деления. Таким образом, клетка происходит только от клетки.

Благодаря применению физических и химических методов исследова­ния и новейших приборов, основные положения клеточной теории бы­ли развиты и углублены. Современная клеточная теория включает следующие положения:

1. клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого;

2. клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

3. клетки размножаются делением, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

4. клетки многоклеточных организмов специализированы по выполняемым ими функциям и образуют ткани;

5. ткани образуют органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

Вывод.

Клетка – живая элементарная открытая система, являющаяся основ­ной структурно-функциональной единицей всех живых организмов, спо­собная к самообновлению, саморегуляции и самовоспроизведению.

Какое значение имеет компартментация эукариотической клетки.

  1. Компартментация – явление. с помощью биологических мембран обеспечивается пространственное разделению веществ и процессов в клетке. Отдельный компартмент представлен органеллой или ее частью (пространство, отграниченное внутренней мембраной митохондрии)

Перечислить признаки, отличающие про- и эукариотическую клетку.

  1. Все организмы, имеющие клеточное строение, делятся на две груп­пы: прокариоты (про – до, карион – ядро), или предъядерные и эукариоты (эу – настоящие, карион – ядро), или ядерные.

Клетки прокариот (эубактерии и цианобактерии) имеют более простое строение:

1. нет организованного ядра, т.е. ядерное вещество не отделено от цитоплазмы собственной мембраной. Ядерное вещество представлено единственной хромосомой, состоящей из 1 молекулы ДНК, замкнутой в кольцо;

2. из органоидов присутствуют только многочисленные, но мел­кие рибосомы;

3. функцию митохондрий у прокариот выполняют ферменты, лежащие непосредственно на плазматической мембране и образующие дыхательную цепь;

4. нет клеточного центра, следовательно, нет митоза (делятся амито­зом);

5. не характерен циклоз (постоянное круговое движение цитоплазмы с органоидами), в то время как отсутствие циклоза для эукариот означает гибель клетки;

6. отсутствуют внутренние мембраны, делящие клетку на отсеки, в ко­торых протекают противоположные процессы.

При всей простоте строения прокариоты – типичные клетки, способ­ные вести независимое существование.

Строение клеточной оболочки животной эукариотической клетки. Перечислить функции, выполняемые плазматической мембраной.

  1. Эукариотическая клетка отделена от внешней среды или соседних клеток плазматической мембраной, или плазмалеммой.

Среди многочислен­ных моделей мембран, наиболее универсальной оказалась так называемая "жидкостно-мозаичная" модель. Согласно ей основой мембраны является жид­костный билипидный слой, образованный строго ориенти­рованными фосфолипидными молекулами. Двойной слой фосфолипидных молекул обращен друг к другу гидрофобными участками, а внешняя и внутренняя поверхности билипидного слоя об­разованы гидрофильными участками молекул. Белки, входя­щие в мембрану, не составляют сплошного слоя на внутрен­ней и внешней поверхности билипидного слоя; они расположены мозаично и обладают способностью к перемещению в билипидном слое. Мембранные белки представлены тремя разновидностями:

  • периферические белки располагаются на поверхности билипидного слоя;

  • погружённые белки пронизывают всю толщу мембраны;

  • полупогружённые белки погружены в мембрану лишь наполовину, выступая наружу с какой-то одной (внешней или внутренней) поверхности мембраны.

Из этой модели организации мембраны вытекает важ­ное следствие, а именно: возможность горизонтального и от­части вертикального смещения

погружённых и полупогружённых белковых молекул, то есть подвижность такой системы.

Пронизывающие белки участвуют в транспорте веществ.

Полупогружённые белки, обращённые внутрь, выполняют регуляторные ф-и.

Полупогружённые белки, обращённые наружу, «узнают» поверхность соседних клеток; благодаря им формируются ткани и органы.

На плазмалемме животных клеток находится гликокаликс – соединение белков и полисахаридов. Он непосредственно свя­зывает клетку с внешней средой и служит для распознавания сигна­лов, поступающих из неё. Он же связывает клетки в ткани. Образует­ся гликокаликс благодаря жизнедеятельности самих клеток.

Функции плазматической мембраны:

  • защитная или барьерная функция

  • обеспечение контактов между клетками

  • сигнальная (рецепторная) – на поверхности мембраны находятся рецепторы, которые воспринимают сигналы из внешней среды

  • транспортная – регулирует транспорт в-в, т. к. обладает избирательной проницаемостью.

Назвать какими структурными компонентами представлен пластинчатый комплекс Гольджи.

  1. Аппарат Гольджи представляет собой систему диктиосом числом от нескольких десятков до нескольких сотен и даже тысяч на клетку. Каждая диктиосома образована стопкой из 3-12 крупных цистерн, похожих на блюдца. От цистерн отходят во все стороны трубочки и пузырьки, имеющие мембранное строение. Трубочки соединяют отдельные цис­терны соседних стопок, так образуется их единая сеть. Пузырьки участвуют в образовании первичных лизосом. В разных типах клеток аппарат Гольджи занимает строго определённое положение, вблизи ядра.

Функции аппарата Гольджи разнообразны:

1. образование первичных лизосом, которые поступают затем в цитоплазму;

2. упаковка белков, поступающих из ЭПС, для последующего экспорта из клетки;

3. синтез структурных компонентов клетки, например, коллагеновых нитей;

4. синтез жиров и полисахаридов, входящих в состав мембран клетки;

В чем сущность комплементарности при формировании молекулы ДНК.

ЦДНК  Г РНК

ГДНК  ЦРНК

ТДНК  АРНК

АДНК  УРНК

Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями по правилу комплементарности: напротив аденина всегда стоит тимин, напротив цитозина – гуанин (они подходят друг другу по форме и числу водородных связей – между А и Т две связи, между Ц и Г – 3). Получается двойная цепь ДНК, она скручивается в двойную спираль.

Перечислить компоненты интерфазного ядра и охарактеризовать ядерный матрикс.

  1. Структурные элементы интерфазного ядра Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

  • хроматин;

  • ядрышко;

  • кариоплазма;

  • кариолемма.

(по другой классификации)

  • Ядерная оболочка (кариолемма)

  • Ядерный сок (кариолимфа)

  • Ядрышки (нуклеолюс)

  • Глыбки хроматина

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

  • эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

  • гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

Ядрышко - сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров.

Кариолемма (нуклеолемма) - ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Назвать химические компоненты хромосом и указать их примерный процентный состав.

  1. Главные химические компоненты хромосом представлены ДНК, основными (гистоновые) и кислыми (негистоновые) белками, на долю которых приходится соответственно 40% и около 20%. В хромосомах содержатся РНК, липиды, полисахариды, ионы металлов.

Перечислить группы хромосом человека в зависимости от положения центромеры.

  1. Каждая хромосома состоит из двух хроматид, кото­рые соединяются с помощью первичной перетяжки (центромеры).

Иногда на одном из плеч хромосомы может находиться вторичная перетяжка, которая отделяет спутник. Такие хромосомы называются спутниковыми, у человека это хромосомы 13,14,15,21,22 пар. Область вторичной перетяжки называется ядрышковым организатором, т.к. здесь образуются ядрышки.

В зависимости о положения первичной перетяжки выделяют следующие виды хромосом:

  1. равноплечие (метацентрические) – центромера делит хромосомы на два равных плеча

  2. слабо неравноплечие (субметацентрические) – центромера делит хромосомы на два слабо неравных плеча

  3. резко неравноплечие (акроцентрические) – центромера делит хромосомы на два резко неравных плеча

  4. одноплечие (телоцентрические) – центромера располагается на самом конце хромосомы.

У человека нет телоцентрических хромосом.

Что представляют собой по химической природе ядрышки. Какую функцию они выполняют.

  1. Ядрышки – это округлые, сильно уплотнённые, не ограниченные мембраной участки клеточного ядра диамет­ром 1-2 мкм и больше. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность. В ядре их может содержаться от 1 до 10, а в ядрах дрожжей они отсутствуют.

Во время деления ядра ядрышки разрушаются. В конце деления они вновь формируются вокруг определённых участков хромосомы (ядрышковых организаторов), расположенных в области вторичной перетяжки хромосомы. Функция ядрышек состоит в синтезе

р-РНК и сборки субъединиц рибосом из белка и р-РНК.

Какие виды включений встречаются в животной эукариотической клетке. Примеры.

  1. Это непостоянный компонент цитоплазмы. Наличие их и количество зависит от интенсивности обмена веществ и состояния ор­ганизма. Они делятся на три группы:

1. запасной питательный материал (гликоген, жир, крахмал);

2. вещества, подлежащие выведению из клетки (ферменты, гормоны);

3. балластные вещества (пигменты, соли щавелевой кислоты). Они более характерны для растительных клеток, т.к. у растений нет сис­тем, аналогичной выделительной системе животных.

Основным запасным веществом, встречающимся в виде твердых включений, у растений является крахмал, у животных и грибов — гликоген.

Перечислить органеллы, имеющие мембранное строение. Охарактеризовать вакуолярную систему.

  1. Органоиды (органеллы) – постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определённое строение и выполняет определённые функции. Различают: мембранные органоиды – имеющие мембранное строение, причём они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двухмембранными (митохондрии, пластиды, ядро). Кроме мембранных могут быть и немембранные органоиды – не имеющие мембранного строения (рибосомы, клеточный центр и центриоли, реснички и жгутики, микротрубочки).

Вакуолярная система клетки представляет собой единую систему клетки, отдельные компоненты которой могут переходить друг в друга при перестройке и изменении функции мембран. В ее состав входят: эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли

Эндоплазматическая сеть представлена сетью каналов и уплощённых цистерн, ограни­ченных одинарной мембраной. Она разветвляется по всему объёму ци­топлазмы, что позволяет ей выполнять следующие функции:

  • механическая – обеспечение постоянной формы клетки;

  • увеличение площади внутренней поверхности клетки;

  • транспортная – перенос веществ между органоидами клетки, органои­дами и ядром, клеткой и внешней средой;

ЭПС подразделяется на два типа: шероховатую и гладкую. Шерохо­ватая имеет на наружной поверхности многочисленные рибосомы, на которых синтезируется белок. Гладкая сеть состоит из каналов и цистерн меньшего сечения, чем в шероховатой ЭПС. Она выполняет следующие функции:

  • синтез липидов, входящих в состав мембран;

  • обезвреживание вредных продуктов метаболизма;

  • синтез предшественников стероидных гормонов;

Аппарат Гольджи представляет собой систему диктиосом числом от нескольких десятков до нескольких сотен и даже тысяч на клетку. Каждая диктиосома образована стопкой из 3-12 крупных цистерн, похожих на блюдца. От цистерн отходят во все стороны трубочки и пузырьки, имеющие мембранное строение. Трубочки соединяют отдельные цис­терны соседних стопок, так образуется их единая сеть. Пузырьки участвуют в образовании первичных лизосом. В разных типах клеток аппарат Гольджи занимает строго определённое положение, вблизи ядра.

Функции аппарата Гольджи разнообразны:

  • 1. образование первичных лизосом, которые поступают затем в цитоплазму;

  • 2. упаковка белков, поступающих из ЭПС, для последующего экспорта из клетки;

  • 3. синтез структурных компонентов клетки, например, коллагеновых нитей;

  • 4. синтез жиров и полисахаридов, входящих в состав мембран клетки;

Лизосома. Это пузырёк диаметром 0,2 - 0,5 мкм, покрытый однослойной мемб­раной. Эта мембрана предохраняет структуры и вещества клетки от разрушающих действий ферментов лизосом. При нарушений её целостнос­ти ферменты выходят в цитоплазму клетки, и происходит автолиз – са­мопереваривание клетки. Ферменты лизосом способны расщеплять бел­ки, нуклеиновые кислоты, полисахариды и липиды.

Функции лизосом:

  • 1. осуществляют внутриклеточное пищеварение; лизосомы – миниа­тюрная пищеварительная система клетки;

  • 2. удаляют отжившие органоиды клетки или личиночные органы. Так, хвост у головастика лягушек рассасывается под действием фермента лизосом – катепсина;

  • 3. превращают вредные для клетки вещества в перевариваемые про­дукты;

  • 4. участвуют в защите клетки то бактерий и вирусов (вирусы замуровываются в лизосоме).

  • Образуются лизосомы в комплексе Гольджи: сюда поступают синте­зированные на рибосомах ферменты, здесь они окружаются мембраной и вы­водятся в цитоплазму. Это первичные (неактивные) лизосомы. Вторичные (активные) лизосомы образуются из первичных. Они подразделяются на фаголизосомы и аутолизосомы. Фаголизосомы переваривают материал, поступающий в клетку извне. Аутолизосомы разрушают собственные, изношенные структуры клетки. Вторичные лизосомы, в которых процесс переваривания завершён, называются остаточными тельцами. В них отсутствуют ферменты, и содержится непереваренный материал.

Вакуоли – одномембранные органоиды, имеющие вид мешочков, заполненных жидкостью. Образуются из пузырьков ЭПС или аппарата Гольджи.

Функция вакуолей:

- участие в формировании тургорного давления (осмотическое поступление воды);

- обеспечение окраски органов растений (содержит антоциан);

- накопительное пространство (промежуточные продукты обмена растений – глюкоза, лимонная кислота);

- аккумуляция экскреторных веществ (пигменты, алкалоиды);

- выделительная (у пресноводных простейших удаляется вода и растворенные метаболиты).

Охарактеризовать митохондрии как генетически автономные системы.

  1. Митохондрия (1-5 мкм) – двумембранный органоид, выполняющий функцию внутриклеточной энергетической станции. Это округлые образования, ограниченные двумя мембранами – наруж­ной и внутренней. Наружная мембрана гладкая, она регулирует как пос­тупление веществ в митохондрию, так и выведение их. Внутренняя мембрана образует складки – кристы, обращённые внутрь митохондрии. Внутри митохондрии находится так называемый матрикс, содержащий различные ферменты, ионы Са2+ и Мg2+, а также ДНК, т-РНК, и-РНК и рибосомы (причём ДНК и рибосомы у митохондрий похожи на таковые бактерий).

Благодаря наличию собственной ДНК (1 молекула кольцевой формы), митохондрии могут размножаться не­зависимо от деления клетки. Происходит это путём перешнуровки исходной митохонд­рии. Предварительно у них удваивается количество ДНК. Благодаря содержанию т-РНК, и-РНК и рибосом, митохондрии они могут синтезировать собственный белок.

Кроме того, митохондрии играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность).

На кристах митохондрии происходят окислительно-восстановительные процессы, сопровождающиеся выделени­ем энергии. Она используется на образование фосфатных связей в АТФ. Накопление АТФ делает митохондрии своеобразными аккумуляторами энергии клетки, которая расходуется на процессы жизнедеятельности клетки по мере надобности. Из-за интенсивной работы митохондрии имеют малую продолжительность жизни, например митохондрии клеток печени живут всего 10 дней.

Перечислить эволюционно-обусловленные уровни организации жизни.

  1. Уровень организации живого — иерархически соподчинённые уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют семь основных структурных уровней жизни: молекулярныйклеточный, тканевой, организменныйпопуляционно видовойбиогеоценотический ибиосферный.

Молекулярный уровень

Представлен разнообразными молекулами, находящимися в живой клетке.

  1. Компоненты

  • Молекулы неорганических и органических соединений

  • Молекулярные комплексы

  1. Основные процессы

  • Объединение молекул в особые комплексы

  • Кодирование и передача генетической информации

  1. Науки, ведущие исследования на этом уровне

  • Биохимия

  • Биофизика

  • Молекулярная биология

  • Молекулярная генетика

Клеточный уровень

Представлен разнообразными органическими клетками. Клетка - структурная и функциональная единица, а также единица размножения и развития всех живых организмов, обитающих на Земле.

  1. Компоненты

    • Клетка, её строение, специализация и функции

  2. Основные процессы

    • Онтогенез клетки

  3. Науки, ведущие исследования на этом уровне

    • Цитология

Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

  1. Науки, ведущие исследования на этом уровне

    • Гистология

Организменный уровень

Представлен одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий.

  1. Компоненты

    • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточного организма

  2. Основные процессы

  • Обмен веществ (метаболизм)

  • Раздражимость

  • Размножение

  • Онтогенез

  • Нервно-гуморальная регуляция процессов жизнедеятельности

  • Гомеостаз

  1. Науки, ведущие исследования на этом уровне

  • Анатомия

  • Биология развития

  • Аутэкология

  • Генетика

  • Гигиена

  • Морфология

  • Физиология

Популяционно-видовой уровень

Представлен в природе огромным разнообразием видов и их популяций.

  1. Компоненты

    • Группы родственных особей, объединённых определённым генофондом и специфическим взаимодействием с окружающей средой

  2. Основные процессы

  • Генетическое своеобразие

  • Взаимодействие между особями и популяциями

  • Накопление элементарных эволюционных преобразований

  • Осуществление микроэволюции и адаптация к изменяющейся среде

  • Видообразование

  • Увеличение биоразнообразия

  1. Науки, ведущие исследования на этом уровне

  • Генетика популяций

  • Эволюция

Биогенетический уровень

Представлен биогеоценозом. Биогеоценоз - совокупность живых организмов разного уровня организации, проживающих на одной территории, и факторов окружающей среды, влияющих на них. В биогеоценозе выделяют два компонента: биоценоз и экотоп. Биоценоз - совокупность живых организмов различных систематических групп, обитающих на одной территории. Экотоп - совокупность факторов среды, воздействующих на биоценоз.

  1. Компоненты

  • Популяции различных видов

  • Факторы среды

  • Пищевые цепи, потоки веществ и энергии

  1. Основные процессы

  • Биохимический круговорот веществ и поток энергии, поддерживающие жизнь

  • Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз)

  • Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищем)

  1. Науки, ведущие исследования на этом уровне

  • Биогеография

  • Биогеоценология

  • Экология

Босферный уровень

Представлен высшей, глобальной формой организации биосистем — биосферой.

  1. Компоненты

  • Биогеоценозы

  • Антропогенное воздействие

  1. Основные процессы

    • Активное взаимодействие живых и неживых веществ планеты

    • Биологический глобальный круговорот веществ и энергии

    • Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность

  2. Науки, ведущие исследования на этом уровне

  • Экология

    • Глобальная экология

    • Космическая экология

    • Социальная экология

Чем характеризуются уникальные (редко повторяющиеся) последовательности генома человека.

  1. Уникальные гены, 75% ДНК имеют от 1 до 10 копий. Кодируют все белки организма (структурные и регуляторные), кроме белков гистонов.

Для уникальных генов характерно экзонно-интронное строение: кодирующий участок - экзон чередуется с не кодирующим участком - интроном.

Охарактеризовать высоко повторяющиеся последовательности генома человека.

  1. Многократно-повторяющиеся последовательности нуклеотидов, они составляют 15% ДНК. Эти последовательности содержат до сотни нуклеотидов и повторяются в геноме десятки тысяч, сотни тысяч и до миллиона раз (105-106 копий).

Предполагаемая роль многократно повторяющихся последовательностей:

а) узнавание гомологичных участков хромосом во время кроссинговера,

б) разделение структурных и регуляторных генов в кодирующих участках ДНК,

в) регуляция функции генов.

В чем сущность избыточности ДНК у эукариот. Каковы возможные функции избыточной ДНК.

  1. Избыточность ДНК – 99% является избыточной и мутагенный фактор чаще попадает в эти 99% бессмысленных последовательностей.

Избыточность ДНК в геноме – наличие дуплицирующихся генов

Функции "избыточной" ДНК до конца не ясны, полагают, что она участвует в регуляции экспрессии генов, процессинга РНК, выполняет структурные функции, повышает точность гомологичного спаривания и рекомбинации хромосом в процессе мейоза, способствует успешной репликации. Большая часть этой ДНК возникла в результате обратной транскрипции РНК и благодаря наличию подвижных элементов.

Структурная организация клеточного центра, его функции.

  1. Клеточный центр – не мембранный органоид, в котором из белка тубулина образуются микротрубочки. Клеточный центр состоит из двух центриолей, расположенных перпендикулярно друг к другу. Каждая центриоль – это цистерна, состоящая из 9 строенных микротрубочек. Микротрубочки соединены между собой системой связок, а снаружи одеты белковым чехлом. Перед делением клетки центриоли удваивают­ся. Во время митоза центриоли определяют местоположения полюсов веретена деления. Причём положение центриолей в делящейся клетке определяет центры новых клеток. Здесь будет располагаться ядро, т.к. клеточный центр всегда располагается вблизи ядра.

Клеточный центр выполняет функцию формирования внутреннего скелета клет­ки (цитоскелета). Цитоскелет представля­ет собой сеть микротрубочек, пронизывающих цитоплазму, поддерживающих форму клетки, обеспечивающих движе­ние органоидов клетки, а также работу специализированных органоидов движе­ния — ресничек и жгутиков. Клеточный центр обеспечивает также и нормальное деление клетки. Центриоли клеточного центра расходятся к полюсам делящейся клетки и образуют веретено деления, благодаря которому из одной ма­теринской впоследствии образуются две дочерние клетки. Центриоли представлены цилиндрика­ми, образованными множеством микро­трубочек. Центриоли, расположенные под прямым углом друг относительно друга, находятся вблизи от ядра и образуют клеточный центр.

Что представляет собой компартментация эукариотической клетки. Роль биологических мембран в компартментации клетки.

  1. Компартментация – с помощью биологических мембран обеспечивается пространственное разделению веществ и процессов в клетке. Отдельный компартмент представлен органеллой или ее частью (пространство, отграниченное внутренней мембраной митохондрии)

Благодаря компартментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно взаимодействуют друг с другом.

(Разделение содержимого эукариотической клетки на отсеки,компартменты, свойственно только эукариотическим клеткам)

Принципы жидкостно-мозаичной организации плазматической мембраны.

  1. Эукариотическая клетка отделена от внешней среды или соседних клеток плазматической мембраной, или плазмалеммой.

Среди многочислен­ных моделей мембран, наиболее универсальной оказалась так называемая "жидкостно-мозаичная" модель. Согласно ей основой мембраны является жид­костный билипидный слой, образованный строго ориенти­рованными фосфолипидными молекулами. Двойной слой фосфолипидных молекул обращен друг к другу гидрофобными участками, а внешняя и внутренняя поверхности билипидного слоя об­разованы гидрофильными участками молекул. Белки, входя­щие в мембрану, не составляют сплошного слоя на внутрен­ней и внешней поверхности билипидного слоя; они расположены мозаично и обладают способностью к перемещению в билипидном слое. Мембранные белки представлены тремя разновидностями:

  • периферические белки располагаются на поверхности билипидного слоя;

  • погружённые белки пронизывают всю толщу мембраны;

  • полупогружённые белки погружены в мембрану лишь наполовину, выступая наружу с какой-то одной (внешней или внутренней) поверхности мембраны.

Из этой модели организации мембраны вытекает важ­ное следствие, а именно: возможность горизонтального и от­части вертикального смещения

погружённых и полупогружённых белковых молекул, то есть подвижность такой системы.

Пронизывающие белки участвуют в транспорте веществ.

Полупогружённые белки, обращённые внутрь, выполняют регуляторные ф-и.

Полупогружённые белки, обращённые наружу, «узнают» поверхность соседних клеток; благодаря им формируются ткани и органы.

На плазмалемме животных клеток находится гликокаликс – соединение белков и полисахаридов. Он непосредственно свя­зывает клетку с внешней средой и служит для распознавания сигна­лов, поступающих из неё. Он же связывает клетки в ткани. Образует­ся гликокаликс благодаря жизнедеятельности самих клеток.

Функции плазматической мембраны:

  • защитная или барьерная функция

  • обеспечение контактов между клетками

  • сигнальная (рецепторная) – на поверхности мембраны находятся рецепторы, которые воспринимают сигналы из внешней среды

  • транспортная – регулирует транспорт в-в, т. к. обладает избирательной проницаемостью.

Химический состав, организация и функции гиалоплазмы.

  1. Основное вещество цитоплазмы представлено гиалоплазмой. Это коллоидный раствор неорганических и органических веществ, особенно много в гиалоплазме белков.

Функции гиалоплазмы:

  • соединение компонентов цитоплазмы в единое целое

  • участие в транспорте веществ

  • в гиалоплазме протекает гликолиз

  • в гиалоплазме накапливается АТФ и включения.

Цитоскелет, его организация и функции.

  1. Цитоскелет клетки представлен микротрубочками и микрофиламентами.

Каждая микротрубочка представляет собой полый цилиндр диаметром 20-30нм, образованный белком тубулином. Микротрубочи играют роль цитоскелета, т.к. пронизывают всю цитоплазму клетки. Кроме того, микротрубочки участвуют в создании клеточного центра и в транспорте веществ внутри клетки.

Микрофиламенты – это белковые нити толщиной около 4нм. Большинство из них образовано молекулами актинов, которых выявлено около 10 видов. Они могут группироваться в пучки, образующие опорные структуры цитоскелета.

Микротрубочки – трубчатые образования белковой природы различной длины с внешним диаметром 24 нм. Микротрубочки встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей.

Органеллы животной клетки: ЭПС, аппарат Гольджи, лизосомы, митохондрии, пластиды, рибосомы, клеточный центр.

Органоиды клетки делятся на органоиды общего назначения и спе­циального назначения.

Органоиды спе­циального назначения встречаются только в специализированных клет­ках и обеспечивают выполнение этими клетками специфических функций. К ним относятся миофибриллы мышечной клетки, ресничный эпителий дыхательных путей, ворсинки тонкого кишечника, жгутик сперматозоида.

Органоиды общего назначения присущи всем клеткам. К ним относятся эндо­плазматическая сеть, лизосомы, митохондрии, рибосомы, комплекс Гольджи, клеточный центр, микротрубочки и микрофиламенты, а также пластиды (последние только у растений).

Ядерная оболочка, особенности организации и функции.

  1. Ядро находится либо в центре клетки, либо смещено на периферию. Ядро эукариотической клетки имеет собственную мембрану, отграничи­вающую его от цитоплазмы. Мембрана имеет 2 слоя, между ними находится околоядерное пространство, связанное с ЭПС.

Ядерная мембрана имеет отверстия – поры. Но они не сквозные, а заполнены специальными белками. Через поры из ядра в цитоплазму выходят молекулы РНК, а навстречу им в ядро передвигаются белки. Сама же мембрана ядерной оболочки обеспечивает прохождение низко­молекулярных соединений в обоих направлениях. Внутренняя мембрана ядерной оболочки имеет белковую подстилку, к которой крепятся хромосомы. Это обеспечивает их упорядоченное расположение.

Функции ядерной оболочки: защитная, регуляция транспорта веществ и органелл

Что представляет собой по химическому составу ядерный сок.

  1. Под мембраной находится ядерный сок – кариоплазма. В ней находятся одно или несколько ядрышек, значительное количество РНК и ДНК, различ­ные белки, в т.ч. большинство ферментов ядра, а также свободные нуклеотиды, аминокислоты, промежуточ­ные продукты метаболизма. Кариоплазма осуществляет взаимосвязь всех ядерных структур.

Назвать и кратко охарактеризовать механизмы ядерно-цитоплазматических транспортных потоков.

  1. Механизмы ядерно-цитоплазматических транспортных потоков разнообразны. Ионы, низкомолекулярные соединения (сахара, аминокислоты, нуклеотиды), некоторые белки (гистоны) проникают в ядро относительно легко и вне связи с порами ядерной оболочки. Известен механизм проникновения в ядро стероидных, в частности половых гормонов (эстрадиол, прогестерон, тестостерон). Будучи жирорастворимыми, они легко проходят через плазмалемму из околоклеточной среды в цитоплазму клетки, где комплексируются с цитозольными рецепторами (семейство «белков теплового шока»). Такой комплекс проходит через ядерную оболочку и связывается с гормонидуцируемыми генами. В итоге - активация последних, обусловливающая цепь событий, необходимых для полового развития организма и осуществления им репродуктивной функции. В рассмотренном примере белки теплового шока - это транскрипционные факторы в неактивном состоянии, активируемые путем взаимодействия с гормоном (рис. 2.9).

Крупные белковые молекулы, рибонуклеопротеидные комплексы (субъединицы рибосом) попадают в ядро или покидают его через особые структуры - ядерные поры. Это проверено введением в цитоплазму клетки частиц коллоидного золота (диаметр порядка 14 нм), которые проникают из цитоплазмы в ядро, предварительно скапливаясь вблизи ядерных пор.

Что представляет собой ядрышко-образующие районы хромосом. Перечислить хромосомы человека, имеющие эти районы.

  1. ?Во время деления ядра ядрышки разрушаются. В конце деления они вновь формируются вокруг определённых участков хромосомы (ядрышковых организаторов), расположенных в области вторичной перетяжки хромосомы. Функция ядрышек состоит в синтезе

р-РНК и сборки субъединиц рибосом из белка и р-РНК.

Иногда на одном из плеч хромосомы может находиться вторичная перетяжка, которая отделяет спутник. Такие хромосомы называются спутниковыми, у человека это хромосомы 13,14,15,21,22 пар. Область вторичной перетяжки называется ядрышковым организатором, т.к. здесь образуются ядрышки.

В чем сущность полярности, антипараллельности полинуклеотидных цепей молекулы ДНК.

  1. Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).

Цепи ДНК – антипараллельны (разнонаправлены), т.е. против 3'-конца одной цепи находится 5'-конец другой.

Фундам. св-во двойной спирали ДНК состоит в том, что ее цепи комплементарны друг другу вследствие того, что напротив А одной цепи всегда находится Т другой цепи, а напротив G всегда находится С. Комплементарное спаривание А с Т и G с С осуществляется посредством водородных связей.

Можно ли говорить о первичной, вторичной и третичной структуре ДНК. Если можно, как они представлены.

  • Первичная структура ДНК — это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5'- на 3'-конец цепи.

  • Вторичная структура — это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипараллельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований — образования водородных связей, двух в паре А-Т и трёх в паре G-C.

  • Третичная структура – двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см в вытянутой форме ДНК укладывается в 5 нм. Суперспирализация ДНК может быть нарушена разрывом в одной из цепей или обеих цепях двойной спирали под действием ДНКазы.

Что представляет собой геном организма. Перечислить компоненты генома человека.

  1. ?Гено́м — совокупность наследственного материала, заключенного в клетке организма. Геном содержит биологическую информацию, необходимую для построения и поддержания организма. 

Геном человека — совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.

Дать определение кариотипа. Что представляет собой кариотип человека?

  1. Кариотип – это хромосомный набор характерный для данного вида организмов и характеризующийся определенным числом и строением хромосом. Или совокупность данных о числе, форме и размерах хромосом называется – кариотип.

В кариотипе человека 23 пары хромосом. 22 пары хромосом одинаковы у мужчин и женщин, они называются аутосомами. Одна пара хромосом – половые хромосомы, у мужчин это хромосома Х и хромосома У, у женщин это две Х хромосомы.

Хромосомы изучают на стадии метафазы митоза, в этот период они максимально спирализованы и хорошо видны в световой микроскоп.

Метафазная пластинка. Для исследований у человека берут лейкоциты крови, а затем лейкоциты обрабатывают специальными веществами, которые запускают митоз (митогенами). Через 48 часов клетки будут на стадии митоза, и деление останавливают с помощью веществ, которые разрушают нити веретена деления (колхицин), затем хромосомы окрашивают и микроскопируют.

Число хромосом в гамете, свойственное данному виду, называется гаплоидным (1n), а число хромосом, свойственное зиготе и соматическим клеткам, диплоидным (2n). Рисунки или снимки хромосом, которые располагаются в порядке убывания их размера, носят названия кариограмм или идиограмм.

Представить классы белков-гистонов и определить их значение в организации и функционировании хромосом.

  1. Важную роль в структурной организации хроматина и хромосом играют белки гистоны. По химическим свойствам это щелочные (основные) белки, в их состав в большом количестве входят аминокислоты аргинин и лизин, эти аминокислоты имеют 2 аминогруппы и 1 карбоксильную группу. Белки гистоны несут (+) заряд, а ДНК (–) за счет остатка фосфорной кислоты, поэтому имеет место взаимодействие белков гистонов и ДНК. Выделяют 5 классов белков гистонов: H1, H2A, H2B, H3, H4.

Охарактеризовать умеренно повторяющиеся последовательности генома человека.

  1. Умеренно повторяющиеся последовательности нуклеотидов составляют от 10 до 50% ДНК (в геноме у человека 10%). Содержат тысячи нуклеотидов и повторяются в геноме десятки раз и десятки тысяч раз (102-104 копий).

Эти последовательности содержат гены, которые отвечают за синтез тРНК, рРНК, и белки гистоны. Особенностью этих последовательностей является наличие в них 2 участков: кодирующих информацию (гены) и не кодирующих (спейсеры).

Как надо понимать экзонно-интронное строение уникальных генов. Что представляет собой экзон и сколько их может быть в уникальной последовательности.

  1. Экзон - участок гена (ДНК) эукариот, несущий генетическую информацию, кодирующую синтез продукта гена (белка).

Уникальные гены, 75% ДНК имеют от 1 до 10 копий. Кодируют все белки организма (структурные и регуляторные), кроме белков гистонов.

Для уникальных генов характерно экзонно-интронное строение: кодирующий участок - экзон чередуется с не кодирующим участком - интроном.

Что представляет собой физический размер генома человека и каков он в числовом выражении.

  1. Геном человека — совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований

Каковы принципиальные отличия генома про- и эукариот.

  1. Роль хранителя наследственной информации у всех организмов принадлежит ДНК. Эта кислота была открыта в 1869г. Ф. Мишером в ядрах лейкоцитов, но строение её было выяснено только в 1953г. Дж. Уотсоном и Ф. Криком. В своих исследованиях эти учёные опирались на данные рентгеноструктурного анализа молекулы ДНК и на установленное Э. Чаргаффом правило: в молекуле ДНК число пуриновых оснований строго соответствует числу пиримидиновых оснований.

ДНК – полимер, состоящий из десятков (или сотен) миллионов мономеров – дезоксирибонуклеотидов. В состав каждого дезоксирибонуклеотида входит азотистое основание, углевод (дезоксирибоза) и остаток фосфорной кислоты. Нуклеотиды ДНК отличаются друг от друга основаниями. Различают пуриновые основания: аденин (А) и гуанин (Г) и пиримидиновые основания: цитозин (Ц) и тимин (Т). Нуклеотиды ДНК называются соответственно: адениловый, гуаниловый, цитидиловый, тимидиловый.

Нуклеотиды ДНК соединены последовательно в цепочку за счет фосфодиэфирных мостиков, образующихся между углеводом одного нуклеотида и остатком фосфорной кислоты соседнего. Иначе говоря, остаток фосфорной кислоты связывает углеводы со­седних нуклеотидов.

ДНК – это две правозакрученные цепи, основания которых обращены внутрь спирали и образуют пары таким образом, что (А) одной цепи всегда находится про­тив (Т) другой цепи, а (Г) – против (Ц). Между этими парами оснований образуются водородные связи: две меж­ду А и Т и три между Г и Ц. В каждом сочетании оба нуклеотида как бы дополняют друг друга, они комплементарны. Комплементарность – взаимное соответствие в химическом строении молекул, обеспечиваю­щее их взаимодействие. Комплементарные структуры подходят друг к другу как ключ к замку.

На один виток спирали ДНК приходится 10 нуклеотидных остатков. Т.к. расстояние между соседними нуклеотидами = 0,34 нм, шаг спира­ли составляет 3,4 нм.

Диаметр спирали – около 2 нм. Длина спирали может измеряться в метрах.

В процессе эволюции количество ДНК у эукариот возросло в 1000 раз, а количество генов увеличилось в 50 – 100 раз. Это говорит о том, что не вся ДНК в эукариотической клетке несет смысловую нагрузку, т.е. имеет место явление избыточности ДНК. В эукариотической клетке 99% ДНК избыточна, и только 1% несет смысловую нагрузку.

Геном эукариотической клетки устроен сложно, в нем выделяют 3 класса последовательностей нуклеотидов в ДНК.

1) многократно-повторяющиеся последовательности нуклеотидов, они составляют 15% ДНК. Эти последовательности содержат до сотни нуклеотидов и повторяются в геноме десятки тысяч, сотни тысяч и до миллиона раз (105-106 копий).

Предполагаемая роль многократно повторяющихся последовательностей:

а) узнавание гомологичных участков хромосом во время кроссинговера,

б) разделение структурных и регуляторных генов в кодирующих участках ДНК,

в) регуляция функции генов.

2) умеренно повторяющиеся последовательности нуклеотидов составляют от 10 до 50% ДНК (в геноме у человека 10%). Содержат тысячи нуклеотидов и повторяются в геноме десятки раз и десятки тысяч раз (102-104 копий).

Эти последовательности содержат гены, которые отвечают за синтез тРНК, рРНК, и белки гистоны. Особенностью этих последовательностей является наличие в них 2 участков: кодирующих информацию (гены) и не кодирующих (спейсеры).

3) уникальные гены, 75% ДНК имеют от 1 до 10 копий. Кодируют все белки организма (структурные и регуляторные), кроме белков гистонов.

Для уникальных генов характерно экзонно-интронное строение: кодирующий участок - экзон чередуется с не кодирующим участком - интроном.

Что представляет собой хроматин. Его химическая природа.

  1. Основное вещество ядра – хроматин. Он состоит из ДНК (40%), основных белков, или гистонов (40%) и кислых белков (20%). Перед митозом хроматин уплотняется за счет спирализации ДНК и приобретает определённую форму. Теперь он называется хромосомой

Гетеро и эухроматин. В интерфазных хромосомах выделяют более спирализованные участки и менее спирализованные участки. Более спирализованные участки хорошо окрашиваются красителями и выглядят в световой микроскоп в виде глыбок – эти участки называются гетерохроматин, в этих участках нет функционирующих генов. Выделяют 2 вида гетерохроматина: структурный и факультативный.

Структурный гетерохроматин находится, как правило, на концах хромосомы и в области центромеры. В этих участках находятся многократно повторяющиеся последовательности ДНК, которые выполняют, как правило, структурную роль. Структурный гетерохроматин не содержит структурных генов и постоянно находится в спирализованном состоянии. Он составляет 16% генома.

Факультативный гетерохроматин. В клетках ♀ организма в норме находятся 2 «Х» хромосомы, но 1 «Х» хромосома находится в неактивном состоянии в виде гетерохроматина. В световой микроскоп в интерфазном ядре такая хромосома выглядит в виде плотного округлого тельца и называется она половой хроматин (или тельце Барра). Всегда в любом кариотипе функционально активна только одна «Х» хромосома, а остальные «Х» хромосомы переходят в состояние гетерохроматина (инактивируются на 16 день после оплодотворения).

Эухроматин – это менее спирализованные участки хромосом, которые плохо окрашиваются красителями. В этих участках находятся функционирующие гены. Меньшая спирализация этих участков позволяет быстрее списывать с них наследственную информацию.

Какие белки входят в состав хроматина и какие функции они там выполняют.

  1. ?Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки. На долю гистонов приходится до 80% от всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. Несмотря на преобладание в общем количестве, гистоны представлены небольшим разнообразием белков: эукариотические клетки содержат всего 5-7 типов молекул гистонов. В отличие от гистонов, т.н. негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сот), велико разнообразие функций, которые они выполняют.

Гистоны связаны с ДНК в виде молекулярного комплекса, в виде субъединиц или нуклеосом. До этого считалось, что ДНК равномерно покрыта этими белками, связь которых с ДНК определяется свойствами гистонов.

Гистоны - белки характерные только для хроматина, обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают солевую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК. Эта связь достаточно лабильна, легко нарушается, в этом случае может происходить диссоциация ДНП на ДНК и гистоны. Поэтому хроматин, дезоксирибонуклеопротеин или ще как называли раньше, нуклеогистон, является сложным нуклеиново-белковым комплексом, в который входят линейные высокополимерные молекулы ДНК и огромное множество молекул гистонов (до 60 млн. копий каждого типа гистонов на ядро).

Перечислить уровни компактизации ДНК в хромосоме.

  1. В интерфазном ядре принято выделять 3 уровня структурной организации хромосом:

  1. образование нуклеосом. Белки гистоны H2A, H2B, H3, H4, (по 2 молекулы каждого) образуют основу нуклеосомы (остов катушки), вокруг этой основы ДНК делает 2 витка. Белок гистон H1 связывает соседние нуклеосомы, образуется нуклеосомная нить. Длина ДНК уменьшается в 7 раз.

  2. образование фибрилл или спиралеподобной структуры. Белок гистон H1 скрепляет витки спирали. Длина ДНК на этом уровне уменьшается в 6 раз.

  3. Образование петель. ДНК человека образует до 2 тыс. петель. Длина ДНК уменьшается в 25 раз.

Таким образом, в интерфазных хромосомах длина ДНК за счёт спирализации уменьшается ≈ в 1000 раз. Во время митоза происходит дальнейшая спирализация хромосом. Длина ДНК уменьшается в десять тысяч раз. Вероятно смысл компактизации хромосом, заключается в том, чтобы при митозе хромосомы расходились точно к полюсам и не мешали друг другу.

Что представляет собой нуклеосома и как она формируется.

  1. Нуклеосома — это структурная часть хромосомы, образованная совместной упаковкой нити ДНК с гистоновыми белками H2А, H2B, H3 и H4. Последовательность нуклеосом, соединенная гистоновым белком H1, формирует нуклеофиламент (nucleofilament), или иначе нуклеосомную нить.

Сборка нуклеосомы происходит на ДНК. При репликации ДНК материнские гистоны распределяются случайным образом по дочерним цепям. Гистоновые шаперонывременно экранируют заряд гистонов, обеспечивая правильную сборку нуклеосомы. Шаперон CAF1 связан с PCNA, сидит в репликационной вилке, связывая «старые» димеры H3H4, начинает пострепликационную сборку нуклеосом с посадки этого димера.

Несмотря на то, что нуклеосома связывает ДНК независимо от последовательности, различные последовательности ДНК могут в 1000 раз отличаться по потенциалу связывать нуклеосому. Если подряд следуют последовательности, изгибающие ДНК в одну сторону (например, ТАТА), связывание нуклеосомы будет неустойчиво.

Что представляет собой второй уровень компактизации ДНК в хромосоме.

  1. Образование фибрилл или спиралеподобной структуры. Белок гистон H1 скрепляет витки спирали. Длина ДНК на этом уровне уменьшается в 6 раз.

3 уровень. Образование петель. ДНК человека образует до 2 тыс. петель. Длина ДНК уменьшается в 25 раз.

Таким образом, в интерфазных хромосомах длина ДНК за счёт спирализации уменьшается ≈ в 1000 раз. Во время митоза происходит дальнейшая спирализация хромосом. Длина ДНК уменьшается в десять тысяч раз. Вероятно смысл компактизации хромосом, заключается в том, чтобы при митозе хромосомы расходились точно к полюсам и не мешали друг другу.

Что представляет собой третий уровень компактизации ДНК в хромосоме.

  1. Петлевые домены ДНК—третий уровень структурной организации хроматина — хромомерный. В высших уровнях организации хроматина специфические белки свя­зываются с особыми участками ДНК, которая в местах связы­вания образует большие петли, или домены. В некоторых местах есть сгустки конденсированного хроматина, розетковидные образования, состоящие из многих пе­тель 30 нм-фибрилл, соединяющихся в плотном центре. Средний раз­мер розеток достига­ет 100—150 нм. Розетки фиб­рилл хроматина—хромомеры. Каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромо­меры связаны друг с другом участками нуклеосомного хро­матина. Такая петельно-доменная структура хроматина обеспечивает структурную компактизацию хроматина и организует функ­циональные единицы хромосом — репликоны и транскрибиру­емые гены.

Что представляют собой 4-й и 5-й уровни компактизации ДНК в хромосоме.

  1. Более плотная упаковка ДНК (хроматидный и хромосомный уровень) достигается за счет дальнейшей компактизации хромомеров и наблюдается в делящихся клетках — в них хромосомы настолько плотны, что становятся видны в световой микроскоп как отдельные образования. В неделящейся клетке хромосомы деспирализованы (деконденсированы), границ между ними не видно, и их диффузный материал называется хроматином. На электронной микрофотографии в растительной клетке видны более тёмные и плотные участки гетерохроматина и более светлые, рыхлые участки эухроматина. Эухроматин транскрипционно активен, геторохроматин — в основном молчащие участки ДНК, а также теломеры и центромеры — структурные элементы хромосом, не содержащие генов. Центромерные и теломерные участки относятся к облигатому (обязательному) гетерохроматину. Факультативный гетерохроматин может образовываться или не образовываться в данной области ДНК в том или ином типе клеток.

Что представляет собой центромера хромосом и какие функции она обеспечивает.

  1. Каждая хромосома состоит из двух хроматид, кото­рые соединяются с помощью первичной перетяжки (центромеры).

Центромера — участок хромосомы, характеризующийся специфической последовательностью нуклеотидов и структурой. Центромера играет важную роль в процессе деления клеточного ядра и в контроле экспрессии генов.

Центромера принимает участие в соединении сестринских хроматид, формировании кинетохора, конъюгациигомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза. На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате — к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии, которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Конститутивный гетерохроматин, его локализация в хромосомах и функциональное назначение.

  1. В интерфазных хромосомах выделяют более спирализованные участки и менее спирализованные участки. Более спирализованные участки хорошо окрашиваются красителями и выглядят в световой микроскоп в виде глыбок – эти участки называются гетерохроматин, в этих участках нет функционирующих генов. Выделяют 2 вида гетерохроматина: структурный и факультативный.

Структурный гетерохроматин находится, как правило, на концах хромосомы и в области центромеры. В этих участках находятся многократно повторяющиеся последовательности ДНК, которые выполняют, как правило, структурную роль. Структурный гетерохроматин не содержит структурных генов и постоянно находится в спирализованном состоянии. Он составляет 16% генома.

Что представляет собой факультативный гетерохроматин.

  1. Факультативный гетерохроматин. В клетках ♀ организма в норме находятся 2 «Х» хромосомы, но 1 «Х» хромосома находится в неактивном состоянии в виде гетерохроматина. В световой микроскоп в интерфазном ядре такая хромосома выглядит в виде плотного округлого тельца и называется она половой хроматин (или тельце Барра). Всегда в любом кариотипе функционально активна только одна «Х» хромосома, а остальные «Х» хромосомы переходят в состояние гетерохроматина (инактивируются на 16 день после оплодотворения).

Какова структурная организация теломерных участков хромосом.

  1. ?Теломе́ры — концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию. Термин «теломера» предложил Г. Мёллер в 1932 г[1].

У большинства эукариот теломеры состоят из специализированной линейной хромосомной ДНК, состоящей из коротких тандемных повторов. В теломерных участках хромосом ДНК вместе со специфически связывающимися с теломерными ДНК-повторами белками образует нуклеопротеидный комплекс — конститутивный (структурный) теломерный гетерохроматин.

Какова функциональная значимость теломерных участков.

  1. (см. пред. Вопрос?)

Дифференциальное окрашивание хромосом, его сущность и возможности.

  1. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.

Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции - Q-сегменты. Метод лучше всего подходит для исследованияY-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между Х- и Y- хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.

G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы - G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

С-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.

Т-окрашивание применяют для анализа теломерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

Что такое бенд при дифференциальной окраске хромосом. Определите положение представленного участка хромосомы: 1p31.

  1. ?Методы дифференциального окрашивания эухроматиновых районов хромосом, обеспечивающие выявление в эухроматиновых районах чередующихся сегментов, так называемых бэндов (англ.band — полоса, лента, тесьма), которые окрашиваются с различной интенсивностью.

Что представляет собой эухроматин интерфазных хромосом, его функциональная значимость.

  1. Эухроматин – это менее спирализованные участки хромосом, которые плохо окрашиваются красителями. В этих участках находятся функционирующие гены. Меньшая спирализация этих участков позволяет быстрее списывать с них наследственную информацию.

Дать определение гена с точки зрения молекулярной генетики.

  1. С точки зрения молекулярной генетики, каждая хромосома представляла собой одну нить, на которую нанизаны «бусинки» — гены. В основе нити лежит дезокси-нуклеопротеид — молекула ДНК, окруженная белковым чехлом. Из поколения в поколение порядок генов в хромосоме сохраняется.

Какие хромосомы человека относятся к 1-2 группам согласно принятой классификации, их характеристика.

  1. 1960г. Первая классификация хромосом в Денвере. Хромосомы стали нумеровать от первой пары до 23 пары.

В 1960 году Патау предложил разделить все хромосомы на 7 групп.

Группа Номера хромосом Виды хромосом

I (А) 1, 2, 3 большие метацентрические

II (В) 4, 5 большие субметацентрические

        • метацентрические – центромера занимает центральное положение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

        • субметацентрические – центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины;

Какие хромосомы человека относятся к 3-4 группам согласно принятой классификации, их характеристика.

  1. III (С) 6 – 12 средние субметацентрические

IV (D) 13, 14, 15 акроцентрические, спутничные

Мета- и субметацентрические хромосомы имеют 2 плеча, а акроцентрические - 1, фундаментальное число кариотипа равно диплоидному числу хромосом плюс число двуплечих хромосом.

Какие хромосомы человека относятся к 5-7 группам согласно принятой классификации, их характеристика.

  1. V (E) 16, 17, 18 малые субметацентрические

VI (F) 19, 20. малые метацентрические.

VII (G) 21, 22 акроцентрические спутничные

Акроцентрические - центромера смещена на конец хромосомы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]