- •1 Питання з дисципліни «теорія електроприводу»
- •1. Методика складання розрахункової схеми механічної частини електроприводу;
- •2. Розрахунок зведених моментів, моментів інерції і коефіцієнтів жорсткості в кінематичному ланцюзі еп;
- •3. Електромеханічні властивості двигунів постійного струму, основні рівняння;
- •4. Способи регулювання двигунів постійного струму, природні та штучні механічні характеристики, їх характерні особливості;
- •6.2 Механічна характеристика
- •5. Розрахунок механічних характеристик двигунів постійного струму незалежного збудженні;
- •6. Визначення показників якості регулювання двигунів постійного струму;
- •7. Електромеханічні властивості асинхронних двигунів, основні рівняння;
- •3.1.1. Математическое описание процессов преобразования энергии в асинхронных машинах
- •3.1.2. Электромеханические характеристики асинхронных двигателей
- •3.1.3. Режимы работы
- •Динамическое торможение с возбуждением от источника постоянного тока
- •Динамическое торможение с самовозбуждением
- •3.1.4. Способы регулирования момента и скорости
- •3.1.5. Динамические свойства
- •12. Графоаналітичний і аналітичний методи розрахунку перехідних процесів в системах електроприводу.
- •Г л а в а в о с ь м а я графические и графоаналитические методы расчета механических переходных процессов для двигателей с нелинейными механическими характеристиками
- •8.1 Графический метод пропорций
- •Графоаналитический метод последовательных интервалов
- •2 Питання з дисципліни «моделювання електромеханічних систем»
- •1. Математичні моделі та основи функціонального опису систем;
- •2. Види моделей (фізична, математична);
- •3. Основні признаки класифікації і типи математичних моделей (мм);
- •4. Вимоги до мм та їх класифікація;
- •5. Методика сполучення мм елементів, об’єктів або систем;
- •6. Загальні принципи формалізації об’єктів та систем. Морфологічний опис ( побудова структури моделі);
- •7. Моделювання об’єктів та систем на основі потенційних функцій;
- •10. Коротка характеристика числових методів вирішення диференційних та алгебраїчних рівнянь;
- •14. Моделювання стохастичних коливань; ( конспект лекцій, [5, 3 -1; 6, 2-3])
- •3 Питання з дисципліни « електропостачання промислових підприємств»
- •1. Енергетична система і ії складові частини;
- •2. Основні характеристики електричних навантажень;
- •Глава 3 Основные характеристики электрических нагрузок
- •3. Короткі замикання, причини їхнього виникнення і класифікація;
- •4. Електробезпека;
- •5. Схеми промислового електропостачання електроенергії: зовнішні та внутрішні;
- •6. Комутаційна і захисна апаратура (вв, нв), класифікація, види, типи), призначення, галузь застосування, порядок вибору;
- •8. Коммутационная и защитная аппаратура.
- •7. Релейний захист. Основні поняття та визначення. Дифференсування струмів захисту. Фільтровий захист;
- •8. Перенапруга;
- •Причины перенапряжения[править | править вики-текст]
- •Особенности[править | править вики-текст]
- •Устройства защищающие от перенапряжения[править | править вики-текст]
- •9. Якість електроенергії. Основні поняття та визначення.
- •4 Питання з дисципліни «теорія автоматичного керування»
- •1. Визначення диференціальних рівнянь та передатних функцій ланок систем автоматичного керування.
- •2. Побудова частотних характеристик ланок систем автоматичного керування.
- •3. Перетворення структурних схем систем автоматичного керування.
- •5. Дослідження стійкості систем автоматичного керування за коренями характеристичного рівняння та за алгебраїчним критерієм Гурвіца.
- •6. Дослідження стійкості систем автоматичного керування за критерієм Михайлова.
- •7. Дослідження стійкості систем автоматичного керування за методом d- розбиття.
- •2.Метод d-разбиения
- •8. Дослідження стійкості систем автоматичного керування за критерієм Найквіста.
- •9. Побудування перехідних процесів в системах автоматичного регулювання.
- •10. Визначення показників якості систем автоматичного регулюваня за кореневим методом.
- •Частота колебаний
- •Операторный метод:
- •11. Синтез сак за розташуванням полюсів з використанням формули Аккермана.
- •2.3. Формула Аккермана
7. Електромеханічні властивості асинхронних двигунів, основні рівняння;
Назначение асинхронного двигателя в наибольшей степени определяет его конструкцию. В общепромышленных неуправляемых приводах малой и средней мощности используются двигатели с короткозамкнутым ротором. В более мощных приводах, и там где требуется ограничение пусковых токов, применяют двигатели с фазным ротором. Приборную автоматику обслуживают приводы на малоинерционных управляемых асинхронных двигателях. В последнее время, в связи с развитием различных вариантов частотного управления, во всех типах управляемых приводов находят применение асинхронные двигатели с короткозамкнутым ротором. Поэтому наибольшее внимание уделим классическим трехфазным двигателям с короткозамкнутым и с фазным ротором.
3.1.1. Математическое описание процессов преобразования энергии в асинхронных машинах
Математическое описание электромагнитных процессов в машинах переменного тока намного сложнее, чем в машинах постоянного тока. Это объясняется не только тем, что их питание осуществляется переменным током, но и тем, что в таких машинах имеются несколько взаимосвязанных электрических контуров. В результате при описании электромагнитных процессов мы получаем систему дифференциальных уравнений высокого порядка. В теории электромеханического преобразования энергии существуют различные методы упрощения исходных уравнений. Наиболее распространенным из них является представление электрической машины в виде идеализированного двухфазного электромеханического преобразователя. В идеализированной машине в воздушном зазоре имеем круговое поле, а высшие гармоники отсутствуют. Методы перехода от исходной трехфазной машины к идеализированной хорошо разработаны в общей теории электромеханического преобразования энергии – на них останавливаться не будем. Отметим лишь, что в результате преобразований мы получим идеализированную машину, имеющую две обмотки на роторе и две обмотки на статоре, расположенные по ортогональным осям α и β (рис. 3.1). Для такой машины справедлива система уравнений:
(3.1)
где uαs,uβs – напряжения на обмотках статора; iαs,iαr,iβs,iβr – токи в обмотках статора и ротора по осям α и β; Lαs,Lαr,Lβs,Lβr – полные индуктивности обмоток статора и ротора по осям α и β; m – число фаз двигателя; Mэ – электромагнитный момент двигателя.
Рис. 3.1. Модель идеализированной асинхронной машины
Полная индуктивность каждой обмотки может быть записана уравнением
L=M+Lσ
где M – взаимная индуктивность между обмотками ротора и статора по осям α и β; Lσ – индуктивность рассеяния обмотки. Система уравнений (3.1) достаточно точно описывает статические и динамические процессы в асинхронном двигателе, если принят гармонический закон изменения напряжений uα и uβ. Однако она является существенно нелинейной и в таком виде практически не используется. Для упрощения математического описания электромагнитных процессов осуществляют преобразования исходных уравнений. В частности, если в первых четырех уравнениях системы (3.1) провести замену d/dt↔jω, получим систему уравнений асинхронного двигателя в установившемся режиме:
(3.2)
Так
как рассматривается симметричная
машина, целесообразно параметры обмоток
обозначить Ls=Lαs=Lβs, Rs=rαs=rβs, Lr=Lαr=Lβr,Rr=rαr=rβr,
а также ввести понятия xs=ωLs, xr=ωLr –
полные индуктивные сопротивления
статора и ротора, x0=ωM –
сопротивление взаимной индукции. Кроме
того, обозначим результирующие векторы
напряжений
и
токов
,
.
Тогда от четырех уравнений напряжений
(3.2), если обратиться к обобщающим векторам
напряжений, токов и сопротивлений, можно
перейти к двум уравнениям:
(3.3)
где ν=ωр/ω.
Введем понятия скольжение ротора
относительно поля статора s=(ω−ωр)/ω и
ЭДС холостого хода
.
Тогда систему уравнений асинхронной
машины можно представить в виде:
(3.4)
Обозначим zs=Rs+jxs, zr=Rr+jxr, разделим второе уравнение системы (3.4) на s и с учетом того, что Rr/s=Rr+Rr×(1−s)/s, получим
(3.5)
Полученные уравнения описывают электромагнитные процессы асинхронного двигателя в установившемся режиме. По ним строятся векторные диаграммы и схемы замещения двигателя. В частности, если перейти к приведенным параметрам роторной цепи, систему уравнений (3.5) можно представить в виде
(3.6)
Векторная диаграмма, соответствующая уравнениям (3.6) представлена на рис. 3.2.
Рис. 3.2. Векторная диаграмма асинхронной машины
